Beat It, 80beats

By Lisa Raffensperger | March 5, 2013 4:57 pm

It’s the end of an era. No, not the 80s, those will never die. Instead today we say goodbye to the venerable 80beats news blog.

Over the last five years 80beats has brought you more than 4,000 news stories. We’ve written about dead fish flying in wind tunnels, why ancient Romans are partially to blame for climate change, and how dogs can smell cancer on people’s breath.

But just like the 80s never really went out, DISCOVER’s daily news blog is only really getting a new haircut. One that’s less mullet-shaped.

From now on D-brief will be our new home for the best science and tech stories every day. Our name change reflects what we do—give you punchy briefings on the most important news of the day, and have a little fun while we’re at it. That’s DISCOVER’s style.

We’ve got the latest news there right now, so go check it out. Update your bookmarks and subscribe to the new D-brief news feed while you’re at it. We’ll see you on the flip side—and we’ll let MJ take us out.

MORE ABOUT: farewell

Watch This: Cicadas Kill Bacteria with Structures on Their Wings

By Breanna Draxler | March 5, 2013 10:42 am

Clanger or clear wing cicada (Psaltoda claripennis). Image courtesy of Arthur Chapman/Flickr

Cicadas don’t use antibacterial wing sanitizer, so how do these insects keep their wings free of bacteria? Hint: it’s structural.

The wings of the Clanger cicada kill certain bacteria by ripping their cell membranes. A pattern of pillar-like nanostructures on the wings’ surface put pressure on the bacterial cell membrane, causing it to stretch and eventually tear. In a study published in Biophysical Journal in February, researchers modeled this process for the first time. They say this is the first example of a species being able to kill bacteria with a physical structure alone.

Replicating this physical structure in bio-inspired synthetic design could eventually lead to the production of antibacterial surfaces that kill bacteria on contact. Watch the video to see a magnified rendering of how the nano-pillars lead to a bacterial cell’s demise.

Video footage courtesy of Sergey Pogodin et al/Biophysical Journal

“Triple Sun [Nonimx]” music courtesy of Coil/

Read More

CATEGORIZED UNDER: Living World, Technology, Top Posts

Look at This: Map of Future Arctic Shipping Routes

By Breanna Draxler | March 4, 2013 2:26 pm

Optimal September navigation routes for ice-strengthened (red) and common open-water (blue) ships traveling between Rotterdam, The Netherlands and St. John’s, Newfoundland in present years (left) and in future (right). Image courtesy Laurence C. Smith and Scott R. Stephenson/PNAS

The extent of Arctic sea ice has been diminishing since the late 1970s due to climate change, and this decline is predicted to continue in the coming decades. The prospect of open water in these previously icy areas has sparked a lot of speculation about ships being able to navigate between the Pacific and Atlantic Oceans through the Northwest Passage or over the North Pole.

Read More

CATEGORIZED UNDER: Environment, Top Posts

Watch This: Knots Made of Water, Seen in 3-D

By Breanna Draxler | March 4, 2013 11:11 am

Reconstruction of the vortex core and flow field from raw 3D data. The rendered data correspond to a three-fold distorted loop (a), a trefoil knot (b) and a pair of linked rings (slightly after the first reconnection event (c). Image courtesy of Dustin Kleckner and William T. M. Irvine/Nature Physics

When air flows around the wing of an airplane, it creates vortices of swirling air. When that wing accelerates suddenly, two vortices form and circle in opposite directions. Sometimes these circles link with one another to create knots. Knots occur in nature and physicists have theorized for the last hundred years that they could be created in liquid, too. Physicists have now figured out a way to create them and have 3-D footage of the results, which were published in Nature Physics on Sunday.

The researchers used a 3-D printer to make cross-sections of tiny airplane wings. Then they put the wings in a tank of water that was electrically charged to have lots of tiny bubbles. The bubbles show movement in the tank. When the wing was pulled through the water, it created knots in its wake which were recorded in 3-D with a high-speed laser scanner.

Read More

CATEGORIZED UNDER: Physics & Math, Top Posts

SpaceX’s Dragon Launch Not Smooth But Sailing

By Breanna Draxler | March 1, 2013 2:04 pm

Image courtesy of NASA


This morning’s launch of SpaceX’s third Dragon capsule has the twittersphere all a-flutter. Falcon 9’s blastoff from Cape Canaveral initially appeared to be a success. Read More

MORE ABOUT: dragon, Falcon 9, iss, NASA, SpaceX

Watch This: Video Tech Reveals Invisible Color and Movement

By Breanna Draxler | March 1, 2013 11:18 am

Normal shot of a candle (left) versus motion magnified version (right).

Forget 3-D and HD. This new kind of video isn’t almost as good as real life; it’s even better. The technique amplifies colors and movements that are invisible to the naked eye. The resulting view is not only enhanced but dynamic.

“What we’re doing here is a particular project at the intersection of vision and graphics that we call motion magnification,” said Michael T. Freeman, one of the project’s researchers at MIT’s Computer Science and Artificial Intelligence Lab.

Measuring imperceptible changes in color and motion has been around for some time, but this algorithm is the first to capture and visualize these subtle variations on video. The intended applications were medical—visually monitoring the pulse of newborn babies without having to touch them. When tested against conventional methods of taking the pulse (or an EKG in this case) the numbers matched up, according to a NYT blog.

Read More

CATEGORIZED UNDER: Health & Medicine, Top Posts
MORE ABOUT: pulse, video, visualization

Rat Brains Wired to Communicate at a Distance

By Breanna Draxler | February 28, 2013 2:30 pm

Can rats read minds? Perhaps not usually, but researchers at Duke University have developed what they call a brain-to-brain interface, which transfers information directly from one rat’s brain to another. The interface allows the decisions of a rat on one continent to control the behaviors of a rat on another.

To accomplish this, researchers in North Carolina implanted tiny electrodes into the brain of a rat to record its activity, and then trained the rat to distinguish between a wide chute and a narrow one by whisker feel. The rat had to correctly match the sensation (wide or narrow) with a corresponding hole (left or right) by poking it with its nose. When the rat correctly matched the width and hole, which it did 96 percent of the time, the rat was rewarded with a drink of water. Researchers called this rat the encoder.

Read More

CATEGORIZED UNDER: Mind & Brain, Top Posts

“Good” Bacteria is Secret to Avoiding Acne

By Gemma Tarlach | February 28, 2013 3:30 am

Zit happens.

Acne is an unwelcome reality for 80 percent of us at some point in our lives, but researchers have discovered the secret to clear skin may be the kind of bacteria that’s taken up residence there.

According to findings published in the Journal of Investigative Dermatology today, certain strains of Propionibacterium acnes, a bacteria typically found in our pores, may actually protect skin from other strains of P. acnes that cause inflammation in the form of pimples.

Read More

CATEGORIZED UNDER: Health & Medicine, Top Posts
MORE ABOUT: acne, bacteria, skin

Omega-3 Shows Protective Effect Against Skin Cancer

By Breanna Draxler | February 27, 2013 10:15 am

The anti-inflammatory effect of fish and fish oil supplements have long been used to bring down high blood pressure and keep heart disease at bay. The secret ingredient is their omega-3 fatty acids. A new study shows that omega-3 may be good for your skin, too.

Most skin cancer is the result of exposure to ultraviolet radiation from the sun, which suppresses the skin’s immune system making people less able to fight off skin diseases such as cancer. But researchers in England have shown that a daily dose of omega-3 can partially counteract this effect, reducing an individual’s likelihood of developing skin cancer. The fatty acids have been shown to prevent cancer in mice, but this was the first time it was demonstrated in humans.

Read More

CATEGORIZED UNDER: Health & Medicine, Top Posts

Stress Makes Organic Fruits Healthier Than Conventional

By Lisa Raffensperger | February 25, 2013 3:43 pm

Next time you’re in the supermarket weighing the glossy conventional fruit against the small, blotched organic alternative, consider this: organic fruits’ stunted size may be the signal of their nutritional prowess.

Various studies in recent years have shown that some organic fruits and vegetables have nutritional advantages over conventionally-grown produce. For instance, organic tomatoes contain more vitamins, and organic tomato juice has more phenolics, a class of molecules that promote the body’s own antioxidant response.

But it’s been unclear exactly how organic farming brings about these changes in fruit. Now a new study indicates that the secret is stress: While conventional fruits are coddled by synthetic fertilizers, organic plants have fewer minerals available to them—and they therefore produce fruit that’s higher in human-healthy compounds.

Read More

CATEGORIZED UNDER: Environment, Top Posts

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!


80beats is DISCOVER's news aggregator, weaving together the choicest tidbits from the best articles covering the day's most compelling topics.

See More

Collapse bottom bar