A New Clue About Salamanders' Amazing Regenerating Limbs

By Allison Bond | July 1, 2009 6:08 pm

AxolotlThe question of how salamanders regenerate their legs when amputated is an ancient one that dates back to the days of Aristotle. Now scientists have come one step closer to solving the mystery. Contrary to what researchers previously believed, when a salamander’s legs are removed the cells near the amputation site revert to adult stem cells, but do not become pluripotent, or capable of developing into any body part. That explains why a salamander who loses a tail doesn’t regrow a leg in its place.

In the study, published in Nature, scientists explain that when a salamander’s limb is amputated, the muscle, bone, and skin cells at the amputation site change into a clump of adult stem cells called a blastema. Before this experiment, researchers had hypothesized that these undifferentiated blastema cells — which all look identical — are pluripotent and thus able to form many different cells types. But it was not clear how the original cells from adult tissue were reprogrammed, or how the blastema cells went on to form the correct tissue types [Nature News].

To determine how cells give rise to a regrown limb, scientists first inserted a snippet of DNA into the genome of a salamander called an axolotl, which caused it to produce a glowing green protein. From the eggs of these glowing salamanders, they then removed the cells that would eventually develop into legs. Next they removed the future leg-cells of a normal salamander embryo, and implanted in their place the cells that would produce glowing legs–when these formerly normal salamander developed, they had fluorescent limbs. Finally, the researchers amputated their salamanders’ legs, which then regrew. Cells in the new legs also contained the fluorescent protein and glowed under a microscope so the scientists could watch blastemas form and legs regrow in cell-by-cell detail. Contrary to expectation, skin cells that joined the blastema later divided into skin cells. Muscle became muscle. Cartilage became cartilage. Only cells from just beneath the skin could become more than one cell type [Wired.com]. 

Scientists have studied salamanders for some time in the hopes of developing ways to regenerate human limbs, and this study may alter the direction of such investigations. The results “really shift the focus” of regenerative research, [regeneration biologist Andras Simon] said. Instead of trying to generate multipotent or pluripotent cells, “one should try to understand how these cells get the appropriate signals to make a new limb in terms of organizing the different tissue types” [The Scientist]. Still, although the study offers valuable information about how regeneration works in one organism, additional research is necessary. For example, scientists must first learn to control the development of blastema cells before trying any new techniques on humans.

Related Content:
80beats: Invasive Salamander Carries on Endangered Genes While Killing off Natives
80beats: Stem Cells May Eventually Replace Needles for Some Diabetics
80beats: Scientists Identify Two Routes to Nerve Cell Regeneration
80beats: Scientists Produce a Prostate Gland From a Single Stem Cell 

Image: flickr / ninjaspew

  • Christina Viering

    Fascinating experimentation!

  • chemman

    I can’t believe there is only one comment other than mine. This info is pretty dang amazing!

  • eddie

    yes, it is very fascinating to know that and makes a lot of sense too; why would a cell need to revert all the way back to a pluripotent state when it’s only downgrading for a short period (to divide) to be ultimately rebuilt as the same cell it came from. scientists can be so naive in their assumptions.. ;D

    correction* it looks like they might not be “downgrading” at all or dedifferentiating and that the blastema mass is just the division of differentiated cells, can sum1 clarify this?

    btw, does anyone know the average cost of sequencing the human genome to the cost of a salamanders? (which is apparently 10x bigger than ours!)


Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!


80beats is DISCOVER's news aggregator, weaving together the choicest tidbits from the best articles covering the day's most compelling topics.

See More

Collapse bottom bar