Tiny Structures in Beetle's Shell Twist Light, Giving It a Green Sheen

By Allison Bond | July 24, 2009 12:08 pm

beetleScientists now know how the iridescent green scarab beetle‘s shell get its iridescent hue: A molecular arrangement that reflects light, with the reflected light’s magnetic field oriented like a corkscrew, according to a study published in Science.

The beetles don’t appear green due to pigments, which give flowers and plants their colors. Instead, they get their hue from structural color, or molecular structures that reflect light in a certain manner–the same way birds and butterflies do. Light hitting the shell is reflected by the microstructures, and these reflections create an electric field that forms a clockwise helix. Humans cannot see this property — known as left-handed circular polarization — but can see a green hue [ScienceNews]; some organisms, however, can actually see circular polarization itself. The molecular structure consists of three shapes: pentagons, hexagons, and seven-sided heptagons.

The scientists studied the pattern on the surface of the beetle’s exoskeleton using specialized microscopy techniques. They saw how the shell of [the beetle] changes colour at different angles, producing the iridescent colours visible to the human eye… Using laser-scanning confocal microscopy for higher magnifications, the group could discern a helical structure. This structure resembled a cholesteric liquid crystal, which circularly polarizes light as a result of defects that twist its ordered layers of molecules with respect to one another [physicsworld]. Cholesteric liquid crystal, which is man-made, is found in gadgets from computer screens to airplane wings, where they indicate structural stress.

Researchers don’t know why the beetle developed its iridescent shell. “Mainly it is supposed to be for mating purposes, [but] the full range of purpose is not yet known…currently there is no evidence that Plusiotis gloriosa can actually distinguish circularly polarized lights of different handedness” [physicsworld], says lead author Mohan Srinivasarao, whose team is now trying to figure out why the insect’s bright hue evolved and how it can be used to develop new types of synthetic materials.

Related Content:
80beats: Chameleonic Synthetic Opal Could Lead to Full-Color Electronic Paper
80beats: Super-Strong Ceramic Mimics Seashells’ Tough Mother-of-Pearl Coating
80beats: What Color Were Feathered Dinosaurs and Prehistoric Birds?

Photo courtesy of P. Vukusic, University of Exeter

CATEGORIZED UNDER: Living World, Physics & Math
MORE ABOUT: insects, iridescent, light
  • http://clubneko.net robot makes music

    Too bad I didn’t find out about these last semester, I could have ordered a shell to put in an environmental scanning electron microscope – would have been a great final project. I’m guessing these structures would be better imaged on a SEM than a LSCM – but maybe the best thing to do would be to try to get a fragment of shell into the atomic force microscope – that could be wicked.

  • Carter

    Using an SEM to image this structure would be amazing! I think you’re right, Robot. I’m no biologist but I’ve used an SEM to image mineral crystals and thin sections of rock – but the structures seen there are non-organic and nothing like the exciting structure of this beetle’s shell. Still, since a shell is essentially a bio-generated crystal the idea fascinates me. Some minerals have iridescent hues as well (labradorite, the plagioclase feldspar with a composition of An60, is the most well known) and now I wonder if their structures are also responsible for these impressive colors. Time to consult my old Mineralogy textbook.

  • Simplicity

    AntiGravity/ Flight at it’s Finest


Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!


80beats is DISCOVER's news aggregator, weaving together the choicest tidbits from the best articles covering the day's most compelling topics.

See More

Collapse bottom bar