Amazing Shrinking Nanoparticles Could Sneak Into Tumors & Kill Them

By Sophie Bushwick | June 22, 2012 11:42 am

shrinking nanoparticle
In the presence of ultraviolet light, the nanoparticle
shrinks from 150 to 40 nanometers.

As anyone who has played with a powerful laser or just suffered a bad sunburn can attest, light has an impressive power to physically change objects. And now we know that light can make nanoparticles expand and contract like miniature Hoberman Spheres. MIT and Harvard researchers engineered nanoparticles that shrink to less than a third of their original size when exposed to ultraviolet rays; in the darkness or under visible light, they open back up to their more stable, larger size.

Nanoparticles have been touted as an effective way to deliver cancer-killing drugs straight to tumors without harming healthy cells in the process. But the structure of a tumor can block all but the smallest particles—those less than 100 nanometers (billionths of a meter)—from penetrating to the cancer’s heart. To deliver drugs to the entire tumor, the researchers suggest that the particles could be deployed while UV light keeps them in their smaller form, about 40 nanometers. Then, when the UV light is switched off, the particles will open to their full 150-nanometer size and release the drugs.

color change
The nanoparticles, and their dye payload, fully penetrated the
tissue on the left when they were deployed under UV light.

To test their capabilities, the new nanoparticles were given a blue dye payload and set loose on pig corneas, which have a dense collagen structure that makes nanoparticle penetration difficult. When the treatment also included UV light, as in the eye on the left, the dye penetrated throughout the yellow tissue and turned it green. But without the light to shrink down the nanoparticles, as in the eye on the right, the dye’s effect was much less widespread.

Images courtesy of the Journal of the American Chemical Society

CATEGORIZED UNDER: Health & Medicine, Technology
  • Iain

    So how do you get the UV to penetrate into the liver or brain without causing a lot more damage?

  • Karsus

    You continue the research until you find a more applicable switch for cancers in such sensitive areas.


Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!


80beats is DISCOVER's news aggregator, weaving together the choicest tidbits from the best articles covering the day's most compelling topics.

See More

Collapse bottom bar