Tag: antimatter

In a World First, Physicists Trap Elusive Atoms of Antimatter

By Andrew Moseman | November 18, 2010 10:42 am

AntimatterMachineIt’s a trap! (For antimatter.)

Researchers report this week in Nature that they’ve managed to corral atoms of antimatter in the lab and keep them around for about one-sixth of one second—an eternity in particle physics. The ability to trap these atoms means scientists could soon have the ability to study them directly, and perhaps answer one of the fundamental questions of the universe: Why the matter and antimatter present after the Big Bang didn’t annihilate each other completely and leave a matter-less universe behind.

Jeffery Hangst led the research team at CERN’s ALPHA collaboration.

It’s not easy, because of that mutual-annihilation issue. Hangst said the first trick was to combine the particles in a super-cold vacuum setting — less than 0.5 Kelvin, or -458.8 degrees Fahrenheit. That way, the particles don’t instantly jump away and fizzle out. The second trick is to build a magnetic trap to help contain the particles so that they don’t instantly decay. And there’s a third trick: designing a system capable of verifying that the atoms actually exist. “You must have a trap, and you must be cold, and you must be able to detect that you’ve done this,” Hangst said. [MSNBC]

Read More

CATEGORIZED UNDER: Physics & Math, Top Posts

In the Universe’s Decisive Battle, Why Did Matter Prevail Over Antimatter?

By Andrew Moseman | May 21, 2010 11:13 am

TevatronAs opposed to simply energy, the universe is also made of stuff. Not a whole lot of stuff, mind you, at least if you compare the matter we experience to the vast emptiness of space or the preponderance of dark matter. But enough.

The continued prevalence of matter has long been one of my favorite attributes of the universe, given that it allows for the existence of galaxies, and Guinness. However, it’s the source of confusion to physicists. In short, there should have been equal amounts of matter and antimatter present at the creation of the universe, which doesn’t make sense:

If matter and antimatter had come out even in those first moments, they would have instantly destroyed each other, leaving nothing but energy behind [TIME].

But they didn’t; as sure as I’m sitting here, matter won out. And this week, at the Tevatron particle smasher in Illinois, a new clue to the problem has emerged. In a study for Physical Review D, physicist Dmitri Denisov and his colleagues explain that in long-running proton-antiproton collisions (nearly 8 years of them), they saw a slight favoritism toward normal matter in a particular place:

Read More

CATEGORIZED UNDER: Physics & Math
NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

80beats

80beats is DISCOVER's news aggregator, weaving together the choicest tidbits from the best articles covering the day's most compelling topics.
ADVERTISEMENT

See More

ADVERTISEMENT
Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »