Tag: locomotion

Mosquitoes' Clever Little Trick to Survive Collisions With Raindrops: Being Little

By Sophie Bushwick | June 6, 2012 11:23 am

What’s the News:

For a mosquito, venturing out during a heavy rainstorm means risking collisions with droplets 50 times its weight—but this doesn’t deter it from living in humid, rainy climes. In fact, researchers have discovered that the mosquito’s low mass, along with a sturdy exoskeleton, helps it weather (so to speak) the impacts of raindrops without much trouble.

How the Heck:

  • The researchers confined three-millimeter-long Anopheles mosquitoes in a “drop impact chamber,” an acrylic cage five centimeters wide and twenty centimeters tall. To keep the mosquitoes confined and airborne, a mesh top blocked the insects’ exit while still admitting water droplets, and the cage vibrated once every few seconds to prevent the bugs from landing on the walls.
  • A high-speed camera filmed the collisions as the researchers either pumped jets of water into the chamber with the speed of a falling raindrop, or released slower droplets to let the camera get a better view. Although a direct body hit could drag the bug down in a five- to twenty-body-length fall before the mosquito escaped the water, droplets tended to hit the mosquitoes’ long wings and legs instead, rolling off their water-repellant bodies and only slightly skewing their flights.

 

Read More

CATEGORIZED UNDER: Environment, Top Posts

How Sandfish Lizards Slither So Quickly Through the Sahara

By Andrew Moseman | February 24, 2011 10:39 am

Sandfish lizards jostle back and forth, bending their bodies into a slithery S-curve to swim through the sands of the Sahara. Like scorpions and several other native desert species, they long ago mastered the difficult art of moving through the myriad grains of a sandy expanse to escape predators or the blistering African sun. And now physicists are close to cracking their secrets.

Daniel Goldman’s team has been trying to figure out just how the sandfish lizards do it for years now; in 2009 they built a robot to simulate the creature’s slithering motion. This time, for a study in the Journal of the Royal Society Interface, the scientists tried to model the physics of an animal knocking around so many grains of sand and see how the lizards burrow with such efficiency.

The team found sine-wave-like movement allows the lizard, and their robot, to push forward in sand, but creating computer models for the experiments proved problematic. Simulating all of the tiny sand grains required a lot of money to purchase time on powerful computers. So, the team performed the same experiments using 3-millimeter-wide glass beads instead of sand. “We wanted something easy to simulate that had some predictive power. We got lucky, because it turned out [the lizard and robot] swim beautifully in the same way through larger glass beads,” Goldman said. [Wired]

Read More

CATEGORIZED UNDER: Living World, Physics & Math
NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

80beats

80beats is DISCOVER's news aggregator, weaving together the choicest tidbits from the best articles covering the day's most compelling topics.
ADVERTISEMENT

See More

ADVERTISEMENT
Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »