Tag: Chandra X-Ray Observatory

Cannonball star blasts away from the scene of the crime

By Phil Plait | June 29, 2012 9:49 am

When I picture an exploding star in my head — which I do unsurprisingly often — the imaginary mental detonation I picture is symmetric. That is, it expands like a sphere, getting bigger in all directions equally.

Supernovae are actually not like that though. Stars are messy affairs, and when massive ones explode they tend to have internal factors that distort that nice, smooth expansion. One big factor is that the actual point of explosion is off-center in the star, not at its exact heart. That can create a massively asymmetric explosion, blasting vast amounts of material and energy off to one side.

Mind you, the core itself in such a star still collapses to become a super-dense neutron star (or a black hole), but the sideways nature of the explosion can give a kick to the leftover ball of neutrons. Quite a kick. In fact, the energies are so titanic that an off-center supernova explosion can blast the neutron star in the other direction, screaming away from the explosion site like a shell out of the muzzle of a battleship gun.

And now astronomers may have found the most extreme example of this: what looks to be just such a neutron star barreling away from a supernova at high speed:

[Click to Chandrasekharenate.]

This image is a combination of observations from the XMM-Newton and Chandra X-ray observatories, the Digitized Sky Survey, and the 2MASS infrared survey. It shows the supernova remnant SNR MSH 11-16A, located about 30,000 light years away. The purple glow is from X-rays emitted by the gas superheated to millions of degrees by the exposion.

But look off to the right. See that comet-looking thing? I’ve put a close up of it here. You can see a dot at the head of the "comet": astronomers think that might be the runaway neutron star from the explosion that created SNR MSH 11-16A! It’s hard to know for sure, but a lot of things add up to make me think they’re right.

The most obvious is that tail of gas pointing right back to the center of the supernova gas cloud. A hot, young neutron star blows out a high-energy wind of subatomic particles called a pulsar wind, and that pushes against gas floating out in space. As a runaway neutron star blasts through space, it would leave a glowing trail like that. The X-rays appear to be coming from a single, tiny point, just what you’d expect for a neutron star, and observations using optical and infrared don’t see it; again, just what you’d expect since neutron stars are tiny and don’t glow visibly. They’re brightest in X-rays due to their phenomenally strong magnetic fields whipping particles around at high energies.

The fainter tail to the side is something of a mystery, though. Apparently things like this have been seen before, but it’s not clear what’s causing it.

Knowing the distance to the supernova remnant we can get its size, which, together with its expansion rate, tells us that it’s something like 15,000 years old. If that dot is the ejected neutron star, it’s screaming away from the explosion site at a mind-numbing 10 million kilometers per hour (6 million mph) — fast enough to cross the entire United State in two seconds flat! Yegads.

Other runaway neutron stars have been seen moving away from supernovae at high speeds, but none this fast. Again, this has not been confirmed to be the neutron star in question, but if it is, it handily holds the speed record for such an event. Mind you, this star probably has about the mass of the Sun: over an octillion tons!

Can I get another "yegads" from the congregation?

Images like this show me that my mental images of some phenomena need to be updated. We like to simplify in our heads, and that’s fine if it helps us get a grip, a basic understanding, of a complex event. But we have to remember that the Universe is weird and complex and sometimes gleefully bent on crushing our preconceptions. That might make some people uncomfortable, but it fills me with joy. Who wants a boring Universe where we easily understand everything?

Weirdness is way more fun.

Image credit: X-ray: NASA/CXC/UC Berkeley/J.Tomsick et al & ESA/XMM-Newton, Optical: DSS; IR: 2MASS/UMass/IPAC-Caltech/NASA/NSF


Related Posts:

Rampaging cannonball star is rampaging
Runaway star
The Crab is still crabby
Shocking star is shocking. Shocking, I say!

CATEGORIZED UNDER: Astronomy, Pretty pictures, Top Post

Rainbow Pinwheel galaxy

By Phil Plait | May 29, 2012 7:00 am

I have no shame in admitting I love face-on spiral galaxies. Scientifically, of course, they’re fascinating; spread out in front of us are all the inner workings of a galaxy. It’s like having an X-ray of human body in front of you, making it easier to understand anatomy.

But their beauty… well. The scope and grandeur of a face-on spiral is unparalleled, I think, in astronomy, or perhaps any field of science. But don’t take my word on it. See for yourself.

[Click to galactinate, or get a 1900 x 1200 desktop image.]

This is the wonderful nearby spiral M101, and is a composite of no fewer than four orbiting observatories! It has images from Hubble, Spitzer, Chandra, and GALEX. These represent (in order) observations in visible light (shown as yellow in the picture), infrared (red), X-ray (purple) and ultraviolet (blue).

Each shows a different aspect of the galaxy. Visible light shows stars and gas, infrared indicates warm dust, X-ray show hot gas and energetic objects like supernovae and black holes, and ultraviolet is where young stars glow and light the gas around them. Each observation is incredibly useful to a scientist, but combining them together makes them even more powerful.

The things to look for are where colors overlap, and where they don’t overlap. For example, in the outer arms you can see dust and gas and young stars all together, showing where stars are born. In the inner regions of the galaxy the infrared and visible images are next to each other, parallel spirals. Dust blocks visible light, so where there’s lots of dust there’s little light we can see, and vice-versa.

You have to be careful interpreting images like this, though. The outer arms, for example, are blue. You might think this means they’re only giving off ultraviolet light. But you have to account for the different telescopes’ field of view, exposure times, and more. Each of those affects what you see no matter what the galaxy itself may be doing. Images like the one above are useful, even important, but it’s also important to remember their scientific limitations.

But artistically? That’s a different matter. All together.

Image credit: X-ray: NASA/CXC/SAO; IR & UV: NASA/JPL-Caltech; Optical: NASA/STScI


Related Posts:

Hubble delivers again: M101
New pic: SN2011fe in M101
The heat of the Pinwheel
Desktop Project Part 9: Again I see IC 342

CATEGORIZED UNDER: Astronomy, Pretty pictures

Desktop Project Part 18: X-raying the Pac-Man nebula

By Phil Plait | April 12, 2012 6:30 am

[Over the next week or two, I’ll be posting some of the many, many cool astronomical images I’ve been collecting and which are cluttering my computer’s desktop. These are all really cool pictures, and I’m glad I’m finally getting around to writing about them!]

One of my favorite types of objects are things that look like other things. So how can I resist writing about the Pac-Man Nebula, aka NGC 281? As for why it’s called that, duh. The image inset here (click to powerpelletenate) was taken using a telescope that sees optical light, the kind our eyes see.

The resemblance is obvious, isn’t it? If you’re my age or younger, than Pac-Man is pretty much all you can see there (and it’s not the only cosmic object to look like that, either). Of course, as an astronomer, I also see hydrogen (red), oxygen (yellowish-green), dust (black; it absorbs optical light), and evidence of star formation. Those finger-like things on the left are formed when young stars blast out fierce amounts of ultraviolet light, and eat away at the gas surrounding them. Think of them like sandbars eroding under a current. Still, all-in-all: this is clearly Pac-Man, albeit one over 9000 light years away.

But what happens when you look with telescopes that see other kinds of light? Like, say, infrared and X-ray? Then things look really different. Opposite, even!

What do I mean by that? Well, let me show you:

See! On the left is a combination of infrared and X-ray observations taken with Spitzer and Chandra, and I scaled the images to show the same field of view. Stuff that’s dark in the optical picture on the right glows brightly in infrared on the left — mostly warm dust. And the pink glow is due to X-rays from the very young, massive, and hot stars in the center of the Pac-Man’s mouth (ghosts?).

Looking at nebulae like this at different wavelengths tells us different stories about them. We learn more about how stars form, and what happens to the nebula itself as they do. Eventually, the stars in the center will explode, becoming supernovae, and will tear the nebula apart. And you know what happens to the nebula then, right?

Right?

Game Over.

Image Credits: X-ray: NASA/CXC/CfA/S.Wolk; IR: NASA/JPL/CfA/S.Wolk; Optical: NSF/AURA/WIYN/Univ. of Alaska/T.A.Rector


Related Posts:

A dragon fight in the heart of Orion
Wocka wocka wocka Mimas wocka wocka
Swimming up the Milky Way
The Cosmic Hand of Destruction

CATEGORIZED UNDER: Astronomy, Pretty pictures

Gallery: Cosmic pictures from the AAS

By Phil Plait | January 17, 2012 7:00 am
cfht_darkmattermap
eso_elgordocluster
fermi_threeyears
herschel_spitzer_lmc
hst_borg58protocluster
hst_m31_doublenucleus
hst_snprimo
sdss_luminousgals
spitzer_cygnusx
titlepic_aas219
wise_milkyway

Galaxy cluster collision makes a splash… a million light years long!

By Phil Plait | December 15, 2011 7:00 am

In what has become an annual tradition here at BA Central, literally the day I post my gallery of best pictures of the year, something comes along that really would’ve made it in had I seen it even a few hours earlier. In this case, it’s a combined Chandra X-Ray Observatory and optical Very Large Telescope image of galaxy clusters colliding that’s so weird that at first I thought for sure it was Photoshopped! But it’s real, so check this out:

What you’re looking at is a collision on a massive scale: not just two galaxies, but two clusters of galaxies slamming into each other, forming this object, called Abell 2052. The total mass of this combined cluster is almost beyond imagining: something like a quadrillion times the mass of the Sun — 1,000,000,000,000,000 Suns! Note that our galaxy has about a hundred billion stars in it, so Abell 2052 is about 10,000 more massive. Yikes.

Something that big has a lot of gravity, and that’s the key to what happened here (PDF). Read More

CATEGORIZED UNDER: Astronomy, Cool stuff, Pretty pictures

Angry nebula is really REALLY angry

By Phil Plait | November 16, 2011 7:00 am

In the heart of the Large Magellanic Cloud (one of the Milky Way’s many satellite galaxies), there lies a vast complex of gas called 30 Doradus. And inside that sprawling volume of space is the Tarantula Nebula, a star-forming region so huge it dwarfs even our own Orion Nebula. Thousands of stars are churning away in there, going through the process of being born.

And as they do, the hottest and brightest of them carve huge cavities in the nebula, heating the tenuous gas therein to millions of degrees. The result? This:

[Click to embiggen.]

I love this image! It’s a combination of observations from the Chandra X-Ray Observatory (in blue, showing the incredibly hot gas) and from Spitzer Space Telescope (in red, showing cooler gas). Those bubbles of hot, X-ray emitting gas are constrained by the cooler gas around them, but it’s likely the hot gas is expanding, driving the overall expansion of the nebula itself. However, it’s also possible the sheer flood of high-energy radiation from the nascent stars is behind the gas’s expansion… or it’s a combination of both. Astronomers are still arguing over this, and observations like this one will help figure out who’s right.

… but you know me. I love pareidolia, and there’s no way you can look at this image and not see a really angry screaming face, shrieking at that blue blob hovering in its way. That’s so cool!

And c’mon, NASA: you release this image two weeks after Halloween? Oh well, I’ll add it to my scary astronomy gallery anyway, which is after the jump below.

Image credit: X-ray: NASA/CXC/PSU/L.Townsley et al.; Infrared: NASA/JPL/PSU/L.Townsley et al.

Read More

CATEGORIZED UNDER: Astronomy, Pareidolia, Pretty pictures

Opening the lid on Pandora's Cluster

By Phil Plait | June 24, 2011 6:29 am

The largest structures in the Universe are superclusters: not just clusters of galaxies, but clusters of clusters. They can stretch for millions of light years and be composed of thousands of galaxies.

Abell 2744, at a distance from Earth of about 3.5 billion light years, is one such megastructure (if you want to sound fancy, astronomers call it "large-scale structure"). Astronomers have been studying Abell 2744 with an arsenal of telescopes, and have discovered that it’s actually the result of the ongoing collision of four galaxies clusters. If you’ve ever wondered what 400 trillion solar masses of material slamming into each other looks like, well, it’s more than a bit of a mess:

[Click to enclusternate.]

Yeah, like I said, it’s a mess.

First off, this picture is a combination of observations from Hubble (in visible light, colored blue, green, and red), the Very Large Telescope (also blue, green, and red), and the Chandra X-Ray Observatory (X-rays, colored pinkish). In visible light you can see literally hundreds of galaxies, probably more, dotting the supercluster. The pink glow is from very hot gas between galaxies; it started its life as gas inside of galaxies that got stripped off and heated to millions of degrees as the galaxies plow through the space around them (I like to think of it as opening a car window to let a noxious smell out — the wind from the car’s motion pushes the air inside the car out the windows).

The blue glow is perhaps the most interesting bit here: it’s a map of the location of dark matter. This type of exotic matter neither emits nor reflects light — hence the name — but it has mass, and that means it has gravity. As I described when this method was used to trace dark matter in the Bullet Cluster, gravity bends space, and light follows that curve. Galaxies farther away get their light distorted by the gravity from dark matter, and that distortion can be measured and used to trace the location of dark matter. The blue glow in the image above maps that.

The thing about dark matter is that it doesn’t interact with normal matter (electron, protons, you, me, lip balm, oranges, whatever). But all that gas between galaxies shown in pink is normal matter, so when one galaxy cluster slams into another at a few thousand kilometers per second that gas gets compressed, mixed-up, and heated. But dark matter just blows right on through. So by comparing the location of the galaxies, the dark matter, and the hot gas, a lot of the cluster’s history can be unraveled.

Read More

NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

ADVERTISEMENT

See More

ADVERTISEMENT
Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »