Tag: red giant

A dying star weaves a spiral in the night

By Phil Plait | October 10, 2012 11:01 am

The number of ways stars can find to die bizarre deaths will never cease to amaze me.

Some explode, supernovae which blast radiation across the Universe. Others fade away slowly over hundreds of billions of years, longer than the cosmos has been around. Some blow off winds of gas and dust, taking on strange shapes from perfect spherical shells to elongated structures that look like two jellyfish kissing.

And then some – a very few – are like R Sculptoris, a red giant on the thin hairy edge of death. And its death is both spectacular as well as just plain old damned weird.

Check THIS out:

This is not a drawing! It’s actual data, observations of R Sculptoris made using the Atacama Large Millimeter/submillimeter Array (ALMA). ALMA looks at light far too low energy for our eyes to see; it’s actually out past infrared in the spectrum. Cold dust and gas emits light at this wavelength, including carbon monoxide. That molecule is created copiously in red giants and shines brightly in the submillimeter, making it easy to see with ‘scopes like ALMA. That’s nice, because CO can be used as a tracer for other, harder to detect molecules like hydrogen. Looking at CO really tells you a lot about what’s going on in the gas and dust.

And what’s going on? Ah, this is the really cool part.

When a star like the Sun (either a bit less massive, or up to about 8 times as massive) ages, the core heats up, which causes the outer part of the star to expand (like a hot air balloon), turning it into a red giant. The details are complicated – read this post on a similar star where I explain it in more detail (and you want to because the details are awesome) – but the bottom line is that helium builds up in a thin shell outside the star’s core, where it fuses into carbon. The fusion rate is insanely sensitive to temperature, and periodic imbalances in temperature cause vast and very sudden increases in the fusion rate – and by sudden I mean over a timescale of just a handful of years, the blink of an eye to a star. Called a thermal pulse, this huge fireball of energy is dumped into the star’s interior, blows upward like a tsunami, and then blasts material clear off the star’s surface.

The result is an epic paroxysm which blows out a massive wave of material, expanding in a sphere around the star. We’ve seen this before, like in the star U Cam. After a few years, you get an eerie detached shell of expanding material, like a smoke ring trillions of kilometers across.

OK, so that’s the thin shell thing on the outside. So what’s the deal with R Sculptoris that makes that freaky inner spiral pattern?

Read More

CATEGORIZED UNDER: Astronomy, Cool stuff, Pretty pictures

The closest supernova candidate?

By Phil Plait | May 18, 2012 7:00 am

[NOTE: Whenever I write about actual cosmic events that might possibly affect us on Earth, I get scared emails from some folks. So let me be up front: there are no stars close enough to Earth to hurt us should they explode. Nothing I write in this post changes that; I'm talking about a star that can go supernova that's closer than I thought any was, but still much too far away to do much to us. So don't panic. But do please enjoy the over-the-topness of what happens when a star explodes. Because it's cool.]

Back in January I started writing what I call BAFacts; daily snippets of astronomy factoids. I post them on Twitter and Google+, and I keep an archive of them on the blog, too.

On May 13 I tweeted this one: BAFact: A supernova has to be less than about 75 light years away to hurt us. No star that close can explode, so we’re OK. The distance may actually be somewhere between 50 – 100 light years, and it depends on the kind of exploding star, but I have to keep these factoids to about 110 characters to tweet them. Nuance is at a premium.

I got so many replies about that one that I decided to do a theme week, and stick with supernovae. The next day I tweeted this: BAFact: The nearest star that can go supernova is Spica – it’s 260 light years away, so we’re safe, and I linked to a video I did a few years back this.

A few minutes later I got a tweet from Nyrath, saying that he thought the nearest star that could explode was IK Pegasi, 150 light years away.

I looked this up, and here’s the thing: he’s right! I had never heard of IK Peg, so I didn’t even know it existed. And it turns out it is the nearest star that can explode, though technically it probably isn’t.

And you know when I say something weirdly oxymoronic like that there must be a good story here, right? Mwuhahahaha. Yes. yes, there is. Stick with me; this is long, but also awesome.

The story

It’s been known for a while that IK Peg is a weird star (you can read quite a bit about it on the ESO website, though the formatting is a bit messed up). It looks like an A-type star — that is, more massive, hotter, and bigger than the Sun. It’s not nearly enough to explode — stars need to be at least 8 times the Sun’s mass to do that, and this star is only about 1.7 times heftier than the Sun.

It pulsates, getting brighter and dimmer on a pretty rapid timescale: each cycle only takes about an hour. A lot of stars do this, but typically when one does it means it’s nearing the end of its life. In a few dozen million years it’ll swell up into a red giant, blow out a strong wind that’ll strip its outer layers away (creating a gorgeous planetary nebula), and eventually retire as a white dwarf; small, dense, and hot, cooling slowly over billions of years.

Except… there’s a monkey in the wrench. The star isn’t alone.

It has a companion. And this is where things get interesting.

Read More

Micro neutron star versus nano comet versus mega red giant

By Phil Plait | December 1, 2011 10:50 am

If you’re a fan of over-the-top ridiculously huge violent explosions, then you won’t do any better than gamma-ray bursts. With apologies to Douglas Adams and Eccentrica Gallumbits, GRBs are the Universe’s largest bangs since The Big One. When they were first discovered, during the Cold War, it was unclear what caused them. There were more theories than there were observations of them! Now we’ve observed hundreds of these things, and we’ve learned quite a bit about them, like a) every one of them is different, 2) they have lots of different sources, and γ) even after five decades they can still surprise us.

Last year on Christmas, the light from a gamma-ray burst reached Earth and was detected by NASA’s orbiting Swift satellite. Designated GRB 101225A, it was weird right off the bat: it lasted a staggering half hour, when most GRBs are over within seconds, or a few minutes at most. Followup observations came pouring in from telescopes on and above the Earth, and the next weird thing was found: the fading glow from the burst seemed to be coming from good old-fashioned heat: some type of material heated to unbelievable temperatures. Usually, the afterglow is dominated by other forces like rapidly moving super-intense magnetic fields that accelerate gigatons of subatomic particles to huge speeds, but in this case it looked like a regular-old explosion.

Both of these things are pretty dang weird. So what could have caused this burst?

Normally, we think GRBs are the birth cries of black holes. When a giant star explodes, or two tiny but ultra-dense neutrons stars merge, they can form a black hole and send vast amounts of gamma rays (super high-energy light) sleeting out into the Universe. In this case, though, something different happened, and two ideas of what was behind it are emerging…. but both involve neutron stars. And I’m not sure which idea is cooler.

Read More

CATEGORIZED UNDER: Astronomy, Cool stuff, Top Post

Exoplanets survive their star's fiery death. Or were they born from it…?

By Phil Plait | October 22, 2010 10:42 am

nnserpentisIt’s kind of amazing that with nearly 500 planets discovered orbiting other stars, we’re still finding ones that are really weird. Massive planets orbiting so close to their stars they are practically plowing through the stellar atmosphere; hot spots on the planet not aligned with their stars; planets orbiting so far out it’s a struggle to understand how they got there.

And now we can add the planets NN Serpentis c and d to that list.

Lying about 1500 light years from Earth, NN Ser is a binary star — most stars in the sky are part of multiple systems, so that in itself isn’t all that odd. But NN Ser is weird: it’s a very dinky red dwarf orbiting very close to a white dwarf. And by very close, I mean really close: they’re separated by only 600,000 km (360,000 miles), which isn’t much farther apart than the Earth and the Moon!

The planets

I’ll get back to the stars in a sec. The planets found (named c and d because the two stars are a and b, according to the naming conventions) are Jupiter-scale beasts, with masses of about 6 and 2 times Jupiter’s, orbiting the binary stars at a distance of roughly 825 and 450 million km (500 million and 270 million miles).

Those numbers don’t seem too odd; lots of planets have been found with similar characteristics. But when you take a closer look at the system…

Read More

CATEGORIZED UNDER: Astronomy, Cool stuff, Top Post

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!


See More

Collapse bottom bar

Login to your Account

E-mail address:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »