Tag: supermassive black holes

An ultradeep image that's *full* of galaxies!

By Phil Plait | March 23, 2012 6:00 am

What happens when you take a monster 4.1 meter telescope in the southern hemisphere and point it at the same patch of sky for 55 hours?

This. Oh my, this:

[Click to embiggen.]

OK, I know. At first glance it doesn’t look like much, does it? Just a field of stars. However, here’s the important bit: I had to take the somewhat larger original image and reduce it in size to fit my 610-pixel-wide blog. So how much bigger is the original?

It’s 17,000 x 11,000 pixels! If you happen to be sitting on a T1 line, then you can grab this massive 250 Mb file. And I surely suggest you do.

Because yeah, the brightest objects you see in this are stars. Probably a few hundred of them. But you have to look at the bigger image ! Why? Because what’s amazing, truly jaw-dropping and incredible is this:

There are over 200,000 galaxies filling this image!

Ye. Gads.

Here’s a zoom of the image, centered on what looked to me to be one of the biggest galaxies in the frame, a nice edge-on spiral.

With the exception of a handful of blue-looking stars, everything in this zoom is a galaxy, probably billions of light years away. Those tiny red dots are galaxies so far away they crush our minds to dust: we’re seeing them with light that left them shortly after the Universe itself formed.

This light is ancient. And it came a long, long way.

By the way, that picture of the spiral there is not even at full resolution! Just to give you an idea, I cropped out just that galaxy in the full-res image and inset it here. If you want to find it in the full frame, it’s about one-third of the way in from the left, and one-third of the way down from the top. Happy hunting.

[Edited to add: I forgot to add that this galaxy is warped! See how the disk flares up on the left and down on the right, just a bit? This is very common in disk galaxies, and our own Milky Way does it too (see #9 at that link). It’s usually caused when a nearby galaxy’s gravity torques on the stars in the disk.]

These images were taken with VISTA, the European Southern Observatory’s Visible and Infrared Survey Telescope for Astronomy (VISTA), a 4.1 meter telescope in Chile. This huge image is actually composed of 6000 separate images, and is the single deepest infrared picture of the sky ever taken with this field of view. Hubble can get deeper, for example, but sees a much, much smaller part of the sky.

Read More

CATEGORIZED UNDER: Astronomy, Pretty pictures

Black holes spin faster after eating each other

By Phil Plait | June 8, 2011 7:00 am

When it comes to black holes, there are some things we know a lot about them — in general. How they form, how they affect space around them, how they eat matter.

The details, though, are maddening. We know, for example, that black holes spin — as odd as that may sound — but how they get that spin and how spin changes over time is elusive knowledge.

A new study has given us an idea of that now, though. Here’s how this works: we see that as matter falls into them, some black holes generate twin beams, called jets, which shoot away from their poles. We see this from black holes that form when stars explode, and we see them in the supermassive black holes that inhabit the centers of all big galaxies, too. We know that various physical features of the jets are tied to the rate at which the black holes spin, and this new study makes this connection more clear. The astronomers used computer models to correlate spin to the jets, and observations appear to confirm these models.

Two very interesting results came out of the study. Read More

CATEGORIZED UNDER: Astronomy, Cool stuff, Top Post

Astro info overload part 2!

By Phil Plait | January 13, 2011 10:30 am

Here are a few more astronomy news stories coming from this week’s AAS meeting, on top of what I already posted yesterday:

This is pretty amazing: astronomers have determined the mass of the supermassive black hole in the center of the giant elliptical galaxy M87, and found it to be a crushing 6.6 billion times the mass of the Sun! This makes it the most massive black hole in the nearby Universe by quite a bit. And the coolest part is that they measured it by observing the speeds of the stars in the center of the galaxy as they orbit the black hole. That’s an incredibly delicate observation to make, and it took the giant Gemini telescope to do it, as well as considerable modeling of the galactic structure.

M87 is the central galaxy in the Virgo cluster and is 60 million light years away (so we’re not in any danger from it). The supermassive black hole in the center of our own galaxy is 4 million solar masses, so the one lurking in the core of M87 is 1600 times more massive than ours. Yikes. Also, M87 is bright enough to be seen with a relatively modest pair of binoculars from a dark site, so next time I get a chance I’ll have to take a look. Knowing such a monster lives there will make it even better to observe.

Red dwarf stars are the most common type of star in the Universe: smaller and cooler than the Sun, for a long time it was assumed they weren’t terribly active in any way. Decades ago, though, it was found they could emit tremendous bursts of energy, super-solar flares that put to shame what the Sun does when it’s active. Astronomers used Hubble images to look at over 200,000 red dwarfs, and caught 100 of them in the act of flaring. Some of these stars are pretty old, which is surprising, since it was thought they’d calm down with age. They might in general, but some seem able to stay peppy. My pal Nicole has more info about this on Discovery News.

OK, one more big black hole story. Or holes: astronomers undertook a systematic search for binary supermassive black holes, and out of 50 candidate galaxies, were able to definitively detect 16 such binary pairs.

The idea is that when big galaxies collide and merge, their central black holes will eventually merge as well. But first they have to approach each other, go into mutual orbit, and over millions or hundreds of millions of years, merge into one bigger black hole. A few binary pairs have been seen before, but this is the largest such group found systematically. The astronomers picked 50 galaxies with features that might indicate binary black holes (such as double sets of features typically seen in spectra taken of galaxies with supermassive black holes in them), and found 16 such pairs. The other galaxies without binary black holes may have something else going on in their cores; perhaps the black hole is producing beams of energy that are interacting with matter around them, for example.

What this means is that bigger telescopes with higher resolution will be able to separate even closer binaries, and eventually we’ll be able to sample a population of them all the way up to when they’re about to actually merge and combine into a single black hole. That must happen in all big galaxies, and has happened in ours perhaps many times!

Image credits (respectively): Gemini Observatory/AURA illustration by Lynette Cook; NASA, ESA, and G. Bacon (STScI); S. G. Djorgovski, H. Fu, et al., Caltech

CATEGORIZED UNDER: Astronomy, Cool stuff

Evidence and theory collide with galactic proportions

By Phil Plait | January 5, 2011 7:00 am

I have a morality tale to tell here, but first we have to do some science. The science is part of the moral, and it’s actually rather surprising and cool. And it was reading about the science that made me chuckle, because the moral to me — as a scientist myself — was pretty obvious, but I know to others it will be as opaque as black hole.

Speaking of which…

We know that at the heart of every big galaxy lies a supermassive black hole. There’s one at the center of our galaxy — tipping the cosmic scale at 4 million times the mass of the Sun! — and one in Andromeda. In fact, looking for these monsters* was one of the key missions for building and launching the Hubble Space Telescope, a mission it had great success with.

There be monsters here. Click to supermassivate.

Why those black holes are there, and so huge, is a matter of some discussion. We’re pretty sure they formed at the same time as their host galaxies themselves, and in fact helped the galaxies grow at the same time the galaxies fed the black holes material. We also know that big galaxies like our Milky Way grew to their current enormous size by literally colliding with and eating other galaxies. This would inevitably lead to the doomed smaller galaxy’s black hole falling to the center of our galaxy, where the insatiable black hole already there would merge with it, growing bigger.

When this happens, so it’s thought, matter in the form of gas, dust, and stars would also fall into the center, feeding the black hole. The matter can pile up outside the hole and get incredibly hot — observations indicate it can reach many millions of degrees, blasting out light in the form of X-rays. Galaxies like these are called active, and we see them everywhere. And many of these active galaxies are weirdly shaped, distorted, indicating they may have recently undergone a big collision. Aha! That fits the idea that colliding galaxies feed black holes and make them active.

There have been so many observations of this that it has matured to become the standard assumption: most active galaxies have recently collided with another galaxy, dumping material into the core and triggering an outburst. I can’t tell you how many papers I’ve read about this, especially when I was working on the public outreach for the Fermi satellite, which was designed to look at active galaxies.

It’s a good story. The problem is, it looks like it’s wrong.

Read More


Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!


See More

Collapse bottom bar