Making the (Higgs) Sausage

By John Conway | December 8, 2011 5:44 pm

For the past year, physicists at the LHC experiments CMS and ATLAS have been analyzing ever–increasing data samples from the huge machine. Rumors are now circulating about what the experiments might announce at next week’s presentations at CERN regarding the search for the Higgs boson. Next Tuesday there will be a joint seminar from the two experiments at CERN in which the latest results are shown. And though I cannot tell you everything that we will say next week (and nothing about the ATLAS results, which I have not seen), from the public statements made by the CERN Director General you already know that an unambiguous discovery is not yet in the offing.

But, following on Matt Strassler’s excellent post about the physics, I thought it might be interesting to tell you what it’s been like this past year getting to this stage in this search. As you probably know, each of the two big experiments has over 3000 physicists participating, from all over the world. Many, but by no means the majority, are resident at CERN; most are at their home institutions in Europe, North America, and Asia and elsewhere.

The main thing that allows us to collaborate on a global scale like this is video conferencing. We used a system called EVO, developed at Caltech, which allows us to schedule meetings and connect to them from a laptop or desktop computer, or even dial in by phone. Sometimes it’s clear that people are connected by phone from the oddest places: once I heard the clear sounds of someone participating in the meeting from a train ride in Italy, oftentimes you hear people speak while they are driving the (hopefully with a hands-free device), and often one hears the sounds of children in the background (including my own). The issue is that meetings can be at any time of day for different people in different continents. Fortunately the experiments have gravitated toward having meetings in the late afternoon, Europe time, which makes it early morning for people like me in California.

A good thing about our videoconferencing system is that you actually have a choice whether or not to transmit or receive the video part of the meeting, which tends to be less useful than looking at material under discussion, which is usually in the form of PowerPoint slides. That makes it even easier to participate early in the morning! No one has to see you in your pajamas, and they probably don’t want to. I did it this morning, in fact, at 6 am.

So what are all these meetings? In CMS, our whole system of producing physics results has a sort of pyramidal structure. Each experiment has a number of physics analysis groups which meet a weekly or biweekly, typically, and have two “conveners” who set the agenda and run the meetings. These convener positions are typically held by senior people in the collaboration such as professors or senior lab scientists, for two years at a stretch, one convener changing out each year. They report to an overall physics coordinator and his or her deputies. Within the physics analysis groups are subgroups devoted to sets of analyses which share common themes, common tools, or similar approaches. Each of these subgroups in turn is led by a pair of conveners who establish the ongoing analyses and guide them to eventual approval within physics analysis group.

We have what I think is a pretty impressive internal website devoted to tracking the progress of each physics analysis. From a single website you can drill down into a particular physics group find the analysis you want get links to all the documentation, and follow what’s happening. In parallel, there is a web system for recording the material presented at every meeting.

The goal of every analysis is to be approved by its physics group, so it can be shown in public at conferences and seminars. This requires having complete documentation including internal notes with full details of the analysis, and a “public analysis summary” which is available to the public, and which often serves as the basis for a peer–reviewed paper which soon follows.

Every analysis is assigned an analysis review committee of three to five people with experience in the topic, who act as a sort of hit squad, keeping the analyzers on their toes with questions and comments at every stage of the analysis, both on the actual analysis details and on the documentation. After all, if we are not our own worst critics, someone else will gladly fill the role!

The process from initially recording data from proton–proton collisions to ultimate physics results can take months. By now the basic algorithms which are run on every collision in order to reconstruct what happened are well-established. But during the year the running conditions of the accelerator changed with ever–increasing rates of proton–proton collisions happening. In every 25 nanosecond “bunch crossing”, by the end of running this year we were recording an average of up to 10 proton–proton collisions. Typically only one of these is of interest and the rest are “minimum bias” events in which the protons strike glancing blows. Nevertheless, these additional interactions caused us a lot of trouble this year because they result in additional energy recorded by the detectors, additional charged tracks, and skew various quantities which we are trying to measure in each collision. This was one of the major challenges of 2011.

In parallel with processing the data that we record, we run full simulations of well–known standard model collision processes which represent our background when we are doing searches for new particles. There is a big organizational challenge in doing these simulations, which run on a worldwide grid of computers devoted to CMS data analysis. We make use of the Open Science Grid for this in the US, the EuroGrid in Europe, and other clusters scattered all around the world, comprising tens of thousands of computing nodes.

The basic idea of any new particle search is simple: you make a selection which retains as many collision events potentially coming from the new particle, while retaining as few background events as possible. Then you predict the number of background events from well-known processes, and see if any excess remains. Almost all analyses these days use the distribution of some final quantity (such as the estimated mass of the new particle) to look for these excesses. At this point one can then use statistical techniques to estimate the largest contribution that could be possible given the observed spectrum, or if there is an access, calculate the probability that the background alone could give rise to such an excess. This is how we quote the statistical significance of the results.

The details, though, boggle the mind. The graphic here shows the complexity of the statistical procedure for correctly keeping track of all the little correlations that can occur among and between the search channels. (This graphic is courtesy Kyle Cranmer of NYU, one of the main Higgs combiners in the ATLAS experiment.)

A great deal of our meetings is devoted to studying the level of agreement between our observed spectra and predicted spectra based on full simulation or clever techniques using the actual observed data to predict the background. In the case of the search for the Higgs boson, there are a couple dozen “channels” in which to search, which reflect how the Higgs is produced and how it decays. The results from these individual channels are then combined into one final statistical analysis which essentially answers the question: is there evidence of Higgs boson production if the Higgs masses thus-and-such a value? What will be presented next week at CERN is in fact the result of that analysis and as much detail as possible about the results feeding into the answer.

This year has seen a dramatic leap in our knowledge about where the Higgs boson isn’t, and as of a few weeks ago the combined results from CMS And ATLAS left open only a small mass window from 115–140 GeV where it could exist. As luck would have it, the remaining mass region is the most difficult to explore with the LHC, but it has been clear for some time that with the data set anticipated this year, and now recorded and analyzed, the LHC could close the window even further, and perhaps all the way after combining the results from both experiments and with the data from the Tevatron. But the window will only close completely if the Higgs is not there.

For a while, earlier this fall, there was rampant speculation in the science media about the possibility that “there is no Higgs boson” but as the allowed mass window has shrunk, it’s shrunk down right down to the region where we would expect the Higgs boson to exist, if it does. So we shouldn’t give up yet! We’ve known it will take a lot more data to establish the existence of the Higgs boson at the golden five sigma level and begin to measure its mass, etc., but by next summer I think the it should be clear one way or the other.

My own role in this whole process started years ago when I worked with my students and postdoc to create a new algorithms for identifying tau lepton decays (the tau is the heaviest partner of the electron), and helped develop new methods for calculating the Higgs boson mass from its decays to pairs of taus. By last year, before we had an appreciably large sample of physics data, we had established within the physics analysis groups the methods we wanted to deploy in this search. We teamed up with groups from other institutions and, a year ago, another professor (Sridhara Dasu from University of Wisconsin-Madison) and I led a team of about 10 students and postdocs in getting the first version of this analysis through the full process. It took months, but we eventually published the results in is a Physical Review Letter in the spring, as the LHC started to deliver much higher luminosity.

With new data in hand, we “turned the crank” on the same analysis, more or less, for the summer conferences adding a few embellishments, and then improved it again this fall. This pattern was repeated in parallel by a dozen other teams in the Higgs search. I would reckon there are at least 200 people involved in the search in a serious way in CMS. It’s been more of a marathon than a sprint for all concerned, and now my former student is now a postdoc at Wisconsin and my former postdoc is now a scientist at a Ecole Polytechnique in France. Our analysis group, I can tell you, has some of the most talented physicists with whom I’ve ever had the privilege to work. For me, that’s one of the great joys of being in this field: you are surrounded by really smart people.

It will be interesting to see how the media spin the results that emerge next week. Physicists still smart from the sting of an article in the New York Times back in 1992 with the title “300 Physicists Fail to Find Supersymmetry” and have become much more media-savvy.

If you believe the rumors, then perhaps a more apt metaphor is that of a tiny, growing new plant, two leaves reaching above the soil. With more water and light, it will grow. And grow. And grow.

CATEGORIZED UNDER: Higgs, Science, Top Posts
  • Tony Mach

    I don’t under stand the “data from the telecom” part.

  • Albert Z

    “If you believe the rumors, then perhaps a more apt metaphor is that of a tiny, growing new plant, two leaves reaching above the soil. With more water and light, it will grow. And grow. And grow.”

    Or disappear like all the former “mystery bumps” upon which the credulous have feasted.

    Albert Z

  • Eric

    So, should we interpret the “two leaves reaching above the soil..” metaphor to mean that there are actually two peaks, perhaps one at 119 GeV and the other at 125 GeV?

  • Anadish Kumar Pal

    To continue getting funding till 2020, they had no choice but to release some ‘indicative’ data. Now the challenge for my research is to show practically the real gravitational mechanism not only in action but to find a practical application for my discovery.

  • John

    telecom -> Tevatron (dictate error)

  • John

    Eric #3: don’t take stuff you read on the internet too seriously… :)

  • John

    Anadish: really?

    Albert Z: what you suggest could happen…

  • Michel

    Ah! I am your nemesis then! :) I am working with taus on the Higgs at ATLAS, although I’m with a smaller group of insane people who decided to tackle the hadronic-hadronic channel… It’s difficult, but that’s exactly what makes it fun. We’re hoping to join the ATLAS combination early next year, but there are many challenges between here and then.

  • Jefro

    I love the transparency you are bringing to the project. Keep up the excellent work, and please keep telling us about it! Very well done.

  • John

    Michel, in the early days of the Tevatron Run 2, a decade ago, we did run a two-hadronic-tau trigger in CDF, but eventually had to turn it off due to high rates. But we did manage to perform a generic high-mass di-tau search before abandoning it.

    CMS has efforts in the works for this, but ATLAS could well beat us here – we shall see! Good luck!

  • Pingback: Sigma: così buoni, così vicini « Tutti a Zanzibar()

  • Michel

    Yes, the trigger is actually what I am working on these days, getting ready for 2012 luminosity conditions! Good luck to you too sir! Oh, and very nice post by the way!

  • Kirk

    Thanks for the ‘day in the life’ report on this global project. The extent of the analytical eco-system should be required reading for science deniers. Not accepting the results of a global investigation is like not accepting the existence of air and water. No one will deny the results of this effort because – no one can see how this will affect behavior *today*. The change in the world that comes about by understanding the Higgs Field WILL change but in ways we do not understand. Yet. There is very little motivated reasoning or cognitive bias about transistors and lasers because Thor never said anything about either subject AND no one understood how their individual behavior would change when these technologies took science into the world via engineering. With evolution by natural selection and climate change everyone on the denier side is trying to stop the flow of time. As if.

  • James


    You say “most are at their home institutions in Europe, United States, and Asia.” However, there are also many people involved in ATLAS who are from Canada, which (contrary to popular culture) is not the 51st American state.

    Sorry for splitting hairs here but why not say “Europe, North America, and Asia” instead? I.e. why differentiate the United States so clearly from the rest of the world? It seems to be a bit against the spirit of the international collaboration at CERN.

    Otherwise, great post! It is a very interesting time to be a physicist – even in the forgotten country of Canada :)

  • Tony Smith

    John, you say that CMS has “… a single website you can drill down into a particular physics group find the analysis you want get links to all the documentation, and follow what’s happening …”.

    After the announcement is made public on 13 December 2011, will the public be given access to that website (and the similar site at ATLAS) ?
    (by access, I do NOT mean access to alter or modify or post to it,
    I ONLY mean read-only access to see the stuff there)

    If so, then what will be the link to it ?

    If not, then why not, and when if ever ?


  • John

    James, my apologies. I changed “United States” to “North America” (so now I have to look up the South American institutions…anyway I said “most”)

    Tony Smith: all of CMS and ATLAS public documentation is accessible by anyone. For CMS the link is

    and for ATLAS it’s

    There is a lot of internal (and much more technical, meaning boring) documentation only accessible to collaboration members. We do need to have internal-only material, for a number of reasons. The main reason is that we only make public our results when they have undergone the full internal review process, so as to avoid any confusion as to what the results really are. The numbers do change during the review process as mistakes are corrected, the calculations refined, and the methods are improved. It would be not very helpful to have the full history out there, interesting as that might be from a sociological point of view. It would be extremely difficult to interpret meaningfully, also, without full access to every email sent by every collaboration member to every other member, which is practically impossible.

  • Curious Wavefunction

    Pretty interesting. I wonder if this kind of communication and data analysis system can be used for other data-rich fields like collaborative drug discovery or genomics.

  • Egaeus

    Can anyone explain to a non-physicist why, if the Higgs does exist in the 119-140 GeV region, it couldn’t be found by the Tevatron? Unfortunately, my physics primarily stopped at Maxwell, with enough quantum theory to understand semiconductors. :)

  • Pingback: Not Being Announced Tomorrow: Discovery of the Higgs Boson | Cosmic Variance | Discover Magazine()

  • John

    Curious Wavefunction: this kind of data analysis is indeed being used in many fields, now. Certainly genomics; I am not sure about collaborative drug discovery though.

    Egaeus: The Tevatron could have found the Higgs boson in the range 115-180 GeV, in fact. If the mass had been near 160 GeV, it would have been seen! At the low end, near 115 GeV, the Tevatron is still competitive with the LHC, and results are expected soon from the full sample. The Tevatron results are somewhat complementary in that the Tevatron relies on a different production mechanism for the Higgs (WH and ZH, as opposed to gluon fusion). So the Tevatron results will add more information no matter what.

  • Pingback: A Tantalizing Hint of the Higgs - IEEE Spectrum()

  • Amrit Sorli, Space Life Institute

    Mass is an energy form of quantum vacuum in symmetry with diminished energy density of quantum vacuum. Presence of mass diminishes energy density of quantum vacuum respectively to the energy of a given mass. A given particle with a mass diminishes energy density of quantum vacuum, mass-less particle does not diminish energy of quantum vacuum. In order to explain mass of elementary particles this view does not require existence of the hypothetical boson of Higgs.

  • Pingback: A Year Well Blogged | Cosmic Variance | Discover Magazine()


Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Cosmic Variance

Random samplings from a universe of ideas.

See More

Collapse bottom bar