Category: Living World

Kicking Stones, Bathroom Breaks Yield Fossils in the Desert

By Jon Tennant | May 4, 2016 12:37 pm
Linheraptor skull

A Linheraptor skull. (Courtesy Michael Pittman)

In the vast emptiness of the Gobi Desert, the days are long and weary, and the searing sun does little to boost the spirit, even with the prospect of discovering new dinosaur species on the horizon.

Exhaustion and sunstroke are a hard-working paleontologist’s enemies out there, and staying well-hydrated is of utmost importance. Thus, an enemy to the paleontologist’s productivity emerges: frequent “relief” breaks out in the wilderness. But sometimes a diversion from the task at hand leads down the road to discovery.

During one such “relief” break in 2008, Michael Pittman and his international team of fossil hunters made the history books while prospecting in the region of Bayan Mandahu in Inner Mongolia, China. Pittman is the current head of the Vertebrate Paleontology Laboratory at the University of Hong Kong, and has spent years scouring the Gobi for fossils. Read More

CATEGORIZED UNDER: Living World, Top Posts
MORE ABOUT: paleontology

Liz Parrish Is Patient Zero in Her Own Anti-Aging Experiment

By David Warmflash | April 29, 2016 12:13 pm
parrish

Liz Parrish is a CEO, humanitarian and patient zero in her own experiment. (Credit: BioViva)

Elizabeth (Liz) Parrish is the CEO of BioViva, a biotechnology company that focuses on developing gene therapies, and other regenerative therapies, to intervene with human aging.

Last September, Parrish added an interesting line to her job description: patient zero for two anti-aging therapies that the company is researching.

Parrish is receiving two kinds of injections, which are administered outside the United States: a myostatin inhibitor, which is expected to prevent age-associated muscle loss; and a telomerase gene therapy, which is expected to lengthen telomeres, segments of DNA at the ends of chromosomes whose shortening is associated with aging and degenerative disease.

The study will likely continue for many years. But last week, BioViva issued a press release describing an unexpected early result, offering a clue as to what the BioViva team might publish in the weeks or months to come.

It will be unclear exactly what the BioViva researchers have found until the results do go through the rigorous process of scientific peer-review, but the un-reviewed BioViva report is raising some eyebrows. Telomeres of T-lymphocytes in blood samples taken from Parrish in September were 6.71 kilobases. That’s shorter than normal for Parrish’s age, but lymphocytes from the samples taken in March after six months of gene therapy measured 7.33 kb, according to BioViva.

160422-telomere-630x451

In this illustration of a chromosome, the telomeres are highlighted in green. (Wikimedia) 

The company equates the reported 620-base increase to reversing the clock on Parrish’s chromosomes by twenty years. But there are numerous caveats noted by experts in genetics and laboratory medicine that were recently published by the non-profit group Genetics Expert News Service.

For one thing, telomeres are being tested only in her T-lymphocytes, as opposed to all tissue types of her body, so even if the test result were evidence for de-aging of T-lymphocytes it doesn’t necessarily prove her entire body de-aged.

“Long-lived T cells have shorter telomere lengths than newly generated naïve cells; and cells which have reached their maximum limit of cell divisions have shorter telomeres than any other cell type,” says Rita Effros, a professor of pathology and laboratory medicine at UCLA. “Thus, a simple change in the proportion of different cell types within the peripheral blood could easily explain the data.”

Furthermore, notes Dr. Bradley Johnson, Associate Professor of Pathology and Lab Medicine at the University of Pennsylvania, “Telomere length measurements typically have low precision, with variation in measurements of around 10 percent, which is in the range of the reported telomere lengthening apparently experienced by Elizabeth Parrish.”

These criticisms notwithstanding, Parrish serving as patient zero for a brand new treatment is a milestone in medicine, one that harkens back to the medical pioneers who regularly injected themselves with various new drugs over a century ago. Before BioViva’s news broke, Discover’s Dr. David Warmflash interviewed Parrish about the therapies and her feelings about being the first test subject.


Discover: What would you say makes BioViva stand out from other biotech or gene therapy companies? Is it that you’re using yourself as a test subject?

Liz Parrish: Yes, and number two is treating biological aging as a disease. Actually, that is probably number one. We’re going at the root cause of what makes most of the population sick. And then second, of course, we’re 100 percent behind the product.

We’re using them. We are not just a research company. BioViva is about saving lives, and lessons from history suggest that the use of multiple experimental therapies at once may be the shortest route to saving lives. When AIDS research first began, we saw the use of many drugs which, when used in isolation, helped with one mechanism of the disease, but patients still died from another mechanism of the same disease. It was only when doctors combined those drugs into cocktails we saw the first real advances in combating AIDS.

hourglass1

Do you feel any connection, or do you see yourself as carrying on a tradition of the those early medical researchers from the late 19th and early 20th century who tested different drugs on themselves?

LP: Yes, I guess so in retrospect. We didn’t do it in the spirit of that. We did it because it had to be done, because we needed a test patient on the gene therapy, but I think it is in that spirit and I wish more people had that spirit. The U.S. is 5 percent of the world population. We take 75 percent of all prescription drugs and yet have the shortest lifespan of every industrialized country, so I wish more people would get behind their drugs and other therapies. I think it would prove that what they have is something that you would want to take.

OK, so let’s talk about the therapies that you’re taking. Is there any concern the telomerase gene therapy could led to malignancy, to cancer, in any tissue?

LP: Telomerase has never been hypothesized to be the sole cause of cancer. Not all cancers have telomerase upregulated in them. Cancer cells can develop daily in your body from a very young age. But isn’t a youthful immune system is what keeps full-blown cancer at bay?

The confusion of longevity research with cancer research is a recurring misconception and implies correlations that have not been proven. There are two lines of research into telomerase: longevity and cancer. The two never intersect.

In longevity research we do not find ourselves looking at increases in cancerous cells from telomerase induction, but rather a protection against cancer.

In previous interviews with other people, you’ve alluded to the tragic story of Jesse Gelsinger, the 18-year-old boy who died in an early gene therapy clinical trial at the University of Pennsylvania in the 1990s.

Ethically, of course there’s a difference between Gelsinger and you; I’ve heard you say that this is worth risking your life for. But on top of the tragedy of Gelsinger losing his life, didn’t it also set the whole field of gene therapy back several years?  

From that perspective, in the unlikely event that something goes terribly wrong in the experiment on you, do you worry what might happen to gene therapy research? Have you considered this a possible rationale for slowing down, maybe taking a more conservative approach?

LP: Gene therapy has come a long way since the 1999 tragedy of Jesse Gelsinger.

The relevant research did not stop [after the event], only the applications, and even then only temporarily. But the big game-changer now is that we have better delivery methods.

Hundreds of people are partaking in gene therapies today and none have the issues we saw 16 years ago in Jesse Gelsinger. We also need to put this in perspective: almost 100,000 people already die of adverse drug reactions (ADEs) every year in the USA alone, while nobody has ever died from this latest generation of gene therapies.

That being said, we at BioViva are very careful to ensure the safest possible outcome while still testing every limit. I would not have taken a gene therapy that would have likely killed the patient and nor would anybody at BioViva. I simply stated that all data are equally important, and that to that end I would accept any outcome, up to and including my own death, in order to move the science forward.

We as a company, and I as a person did take a risk, but a risk we believe will change the world for the better and kick-start an industry with the best approach to curing disease and increasing healthy lifespan.

hourglass-2

What do you think about the idea that, the potential of the studies on you notwithstanding, you’re just one datum, so what will we really know?

LP: Yes, absolutely. That’s true, but N=1 from one human is worth 10,000 mice, but of course every human’s body is different and people are going to respond differently.

And of course the FDA since the 1970s has passed almost 50 drugs through the system to the market that it pulled later, despite going through gold standard testing. So that’s why we have to start now and see what happens. No matter what safety and efficacy you have, if you can have N=10,000, you’re probably going to have some adverse effects down the road.

Whether it’s directly related to the gene therapy or to something else in the patient’s life, it may take years to determine, so it’s very important to start now with gene therapy. Currently, over 100,000 people die of aging related diseases, so at what point do we realize that life is risky and that taking a chance may be our best bet?

Which tissues are they using to monitor your telomere length, given that telomeres vary between tissues? Generally, in telomere studies, lymphocytes are used, because they’re easy to access, but what factors went into deciding which tissues to use in you both for monitoring and targeting the therapy.

LP: We are using lymphocyte testing at this time, as it is the most advanced and well understood way to test telomere length today.

I also understand that to carry the therapeutic gene through your blood and into your cells, BioViva is using what’s called an AAV vector, which has the advantage of delivering the genetic payload so that it ends up as an episome (free floating gene), rather than being integrated into a chromosome.  

Is this a safety measure, to minimize the risk of mutagenesis and oncogenic transformation? Is there any possible negative to that, such as decreased duration of the effects?

LP: We are not necessarily trying to integrate the gene, as studies have not proven the benefit of doing so.

We are trying to create an episome in the nucleus, which will code for the target protein. Integration is still an important discussion because past delivery methods, which we avoid due to them creating integrational mutagenesis (integrating into the chromosome in random areas that caused the cell to become unstable).

We want to separate our method from that older method. Our delivery method does not cause integrational mutagenesis, and when it does integrate, it does so into a safe harbor site on chromosome 19 where cancer is not an outcome.

hourglass3

Are there concerns among your team that treatment for slowing or reversing aging of healthy tissues could also prevent elimination of malignant or premalignant cells? 

LP: Cancer cells can appear in people of any age, but the proliferation of cancer cells owes more to a decrease in immune system capability than an increase in telomerase activity. Not all cancers involve telomerase production, and a peer-reviewed paper in 2012 showed that old mice saw no increase in cancer with telomerase induction.

Telomerase induction may actually be our first line of defense against cancer, because a youthful immune system regularly rids the body of cancerous cells. The mechanism of telomerase could restore cells epigenetically to a youthful state exhibiting fewer aging gene biomarkers. An example would be turning off the genes that turn on as we age such as P53, a tumor-associated gene.

If you were to develop a common type of cancer, how would we know if it’s from the gene therapy, or because you would have gotten it anyway?

LP: If I was to be diagnosed with cancer, we could have that cancer sequenced to see if it had an extra copy of the target gene [from the gene therapy].

So, you’re getting telomerase gene therapy as well as a myostatin inhibitor. Was there any discussion about the merits of giving you two experimental therapies at the same time? Imagine it’s the year 2096, you’re 120 plus, looking and feeling exactly as you do today and you have the blood chemistry of a 25 year-old. How would we know which therapy did it?

LP: Such an amazing outcome, if it happened, would necessarily be due to both those two therapies or more.

We believe that these two types of therapy are synergistic, and will benefit each other in ways that will maximize outcome. One gene therapy is hypothesized to create better signaling with stem cells. The other creates stem cells that can potentially divide indefinitely, as stem cell depletion is a risk for older people.

These benefits, combined with the protection against frailty or sarcopenia (loss of muscle tissue) with a myostatin inhibitor, and the more youthful epigenetics of a cell with telomerase induction, makes this combined therapy very powerful.

MORE ABOUT: genetics

STDs Might Have Driven Us to Embrace Monogamy

By Rob Knell, Queen Mary University of London | April 13, 2016 2:17 pm
monogamy

(Credit: Ivan Galashchuk/Shutterstock)

Exactly why so many humans choose monogamous pair bonds over juggling multiple partners has long been a mystery to scientists. After all, having several partners at the same time should lead to more offspring — an outcome you’d think evolution would favor. Now a new study has linked the phenomenon to sexually transmitted diseases, arguing that monogamy could have evolved because it offered protection against the threat of infection.

Monogamy is, of course, the norm in Western societies. But there are many cultures where a husband can have more than one wife (polygyny) or, less commonly, a wife can have more than one husband (polyandry). This diversity of human mating systems is also hard to explain. What we do know, however, is that many hunter-gatherer societies, living in small groups, were most often polygynous (and many remaining groups still are). But with the rise of agriculture, societies tended to become more complex — and less polygynous. In the most strictly monogamous societies, there was often a social punishment for polygynists, either informally or, as in many modern societies, through a legal system. Read More

Life-Saving Lessons from Hibernating Ground Squirrels

By Kate Gammon | April 8, 2016 1:30 pm
hibernation-1

A hibernating ground squirrel curled up in Matt Andrews’ lab. (Credit: Laboratory of M.T. Andrews)

In a large walk-in freezer at the University of Minnesota, ground squirrels are quietly slumbering in the dark.

As the ground thaws this spring, a new crop of animals around the northern hemisphere will emerge from a long winter’s slumber. At the same time, squirrels in Matt Andrews’ lab at the University of Minnesota will be waking up from their own hibernation.

Andrews studies these hibernating squirrels, and the science may have applications for the health and well-being of astronauts, soldiers and anyone wishing to shed a few pounds. He’s spent decades investigating what happens inside the animals’ bodies as they lay quietly in cold temperatures.

His lab is filled with walk-in refrigerators that hold animals at a constant temperature – about 40 degrees Fahrenheit.

Read More

CATEGORIZED UNDER: Living World, Top Posts
MORE ABOUT: animals

Unintended Consequences: The Sinister Side of Species Protection

By Susan Brackney | April 6, 2016 1:49 pm
bald-eagles

One of 13 bald eagles found dead on a farm in Maryland. (Credit: Maryland Natural Resources Police)

There’s something dark at work when it comes to certain human-animal interactions.

A recent report from the Ecological Society of America admits that calling attention to plants and animals in need of special protections can actually result in “perverse consequences,” ultimately putting some species in harm’s way—even in the face of stiff penalties.

Killing a bald eagle is a federal offense punishable by up to one year in prison and a $100,000 fine. “A subsequent conviction under the Bald and Golden Eagles Act, raises the maximum penalty up to two years in prison and a $250,000 fine,” says Neil Mendelsohn, assistant special agent in charge at the Northeast Regional Office of the U.S. Fish and Wildlife Service.

He’s currently investigating the mysterious deaths of 13 bald eagles discovered in Federalsburg, Maryland in late February. The reward for information now stands at $25,000. Necropsies show the birds didn’t die of disease or natural causes, and officials are keeping mum so far—other than to say human intervention is suspected.

Why do some people target and kill protected animals? It’s a question scientists have asked before. Read More

CATEGORIZED UNDER: Environment, Living World, Top Posts

South Asia’s Vultures Back From the Brink

By William H. Funk | April 4, 2016 8:00 am
vultures

A long-billed (Indian) vulture (Credit: Vaibhavcho, CC)

Unlovely, unloved and utterly necessary for controlling disease and stabilizing ecological health, vultures are under attack around the world.

In Africa, populations of a half-dozen species are nearing collapse due to a combination of human-caused killings ranging from poaching for bushmeat and religious objects to the deliberate poisoning of poached elephant carcasses to destroy the circling scavengers.

In southern Asia, and particularly in India, the chief villain has been a nonsteroidal anti-inflammatory drug called diclofenac, widely used to treat arthritis symptoms in cattle and water buffalo. Diclofenac causes acute kidney failure in vultures feeding from the carcasses of recently treated livestock, and has caused catastrophic declines in all three species of vulture populations in the genus Gyps, including the white-rumped, the long-billed and the slender-billed vultures; the first of these listed species declined by more than 99.9 percent between 1992 and 2007, with tens of millions of individuals dying across South Asia. Read More

CATEGORIZED UNDER: Environment, Living World, Top Posts

Bacteria Give Feet 4 Distinct Odors

By Jason Tetro | March 24, 2016 12:44 pm

shutterstock_297637010

Foot odor comes in four main varieties: sweaty, cheesy, vinegary, and cabbage-y. That’s because of chemicals produced by the bacteria down there.

Methanethiol is a key component in the flavor of cheddar cheese. Acetic acid is a result of sugar fermentation—and is better known as vinegar. Byproducts associated with rot, such as propionic acid and butyric acid, can leave feet smelling like rancid cabbage. The most common foot-related chemical, isovaleric acid, is responsible for the smell we call “sweaty.” Our noses are up to two thousand times more sensitive to this chemical than the others, and many of us can recognize it even at the slightest concentration. Read More

CATEGORIZED UNDER: Living World, Top Posts
MORE ABOUT: microbes & viruses

Archaeologists Race Against Climate Change to Save Cultural Treasures

By Hannah Hoag | March 22, 2016 1:40 pm
01_Friesen-2-1076x588

The remains of a 500-year-old Inuvialuit village are sliding into the ocean as the coast gives way. Archaeologists are moving quickly to excavate the most impressive of the semi-subterranean dwellings to understand the people who lived there. (Credit: Max Friesen)

(This post originally appeared in the brand new, online anthropology magazine SAPIENS. Follow @SAPIENS_org on Twitter to discover more of their work.) 

On a bright and buggy day in July 2014, Max Friesen, whiskered and encased in denim and Gore-Tex, inched across a stretch of tundra overlooking the East Channel of the Mackenzie River, where it unravels into the Arctic Ocean. The archaeologist pushed his way through a tangle of willow brush that grew thick atop the frozen soil sloping towards the ocean.

Friesen was searching for signs of a long-buried house, feeling for the berms and sharply defined depressions in the ground that pointed to subterranean walls and rooms. The work was difficult and stressful. Shrubs obscured the ground. Friesen had to trust that what he felt beneath his boots was in fact the structure of a large home hundreds of years old.

“I was under horrible pressure,” says Friesen from his office at the University of Toronto a year later. “I had this crew of 10 that I wanted to get digging. But if you make a mistake, you’ve devoted 10 people’s labor for weeks at incredibly high costs to get the project going, and if you came down on a crappy house it would be really terrible.” Read More

CATEGORIZED UNDER: Living World, Top Posts

Are Hatcheries Helping, or Hurting, Wild Fish Populations?

By Matthew Berger | March 3, 2016 12:52 pm
4173402394_cb49c4c92b_b

A spawning steelhead trout works its way up the Lewis River at Lucia Falls near Vancouver, WA. (Credit: Greg Shields/Flickr)

The Columbia River basin, stretching from Idaho down through Washington and Oregon, is dotted with more than 200 hatcheries in which salmon and steelhead trout are raised before being released to supplement wild populations.

Those wild fish have struggled on their own, due to fishing, dams that block migration routes and other human-related pressures. Hatcheries can help stabilize populations, allowing fishing operations to continue, but only if they produce fish whose offspring can thrive in the wild.

Michael Blouin, a biology professor at Oregon State University, has long known that fish raised in the concrete troughs of a hatchery are different than wild fish. Blouin and his fellow researchers discovered this back in 2011. Their 19-year examination of steelhead trout — an anadromous fish in the same genus as Pacific salmon — found that steelhead raised in captivity were adapting to the evolutionary pressures of the hatcheries within a single generation. The steelhead that best adapted to hatcheries did worst, in terms of reproductive success, once they were released into the wild. Read More

CATEGORIZED UNDER: Environment, Living World, Top Posts

Are Stone-Throwing Chimps Performing ‘Sacred’ Rituals?

By Laura Kehoe, Humboldt University of Berlin | March 2, 2016 11:54 am

Stone throwing – in action and on site. Top line: Adult male tossing, hurling and banging a stone. Bottom line: Stones accumulated in a hollow tree; typical stone throwing site; and stones in between large roots. (Credit: Kühl et al [2016]).

I trampled clumsily through the dense undergrowth, attempting in vain to go a full five minutes without getting snarled in the thorns that threatened my every move. It was my first field mission in the savannahs of the Republic of Guinea. The aim was to record and understand a group of wild chimpanzees who had never been studied before. These chimps are not lucky enough to enjoy the comforts of a protected area, but instead carve out their existence in the patches of forests between farms and villages.

We paused at a clearing in the bush. I let out a sigh of relief that no thorns appeared to be within reach, but why had we stopped? I made my way to the front of the group to ask the chief of the village and our legendary guide, Mamadou Alioh Bah. He told me he had found something interesting – some innocuous markings on a tree trunk. Something that most of us wouldn’t have even noticed in the complex and messy environment of a savannah had stopped him in his tracks. Some in our group of six suggested that wild pigs had made these marks, while scratching up against the tree trunk, others suggested it was teenagers messing around.

But Alioh had a hunch – and when a man that can find a single fallen chimp hair on the forest floor and can spot chimps kilometers away with his naked eye better than you can (with expensive binoculars) as a hunch, you listen to that hunch. We set up a camera trap in the hope that whatever made these marks would come back and do it again, but this time we would catch it all on film. Read More

CATEGORIZED UNDER: Living World, Top Posts
MORE ABOUT: animals
NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

The Crux

A collection of bright and big ideas about timely and important science from a community of experts.
ADVERTISEMENT

See More

ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Collapse bottom bar
+