Category: Space & Physics

Six Amazing Sights That Look Even Better From Space

By Miho Janvier, University of Dundee | August 28, 2015 3:57 pm

UnimportantNaturalDungbeetle

Imagine seeing the lights of cities spreading around the Nile Delta and then in less than an hour gazing down on Mount Everest. The astronauts on the International Space Station (ISS) are among the lucky few who will have this humbling, once-in-a-lifetime experience of seeing the beauty of Earth from space.

The ISS doesn’t just offer spectacular and countless views of the natural and man-made landscapes of our planet. It also immerses its residents into the Earth’s space environment and reveals how dynamic its atmosphere is, from its lower layers to its protective magnetic shield, constantly swept by the solar wind.

The best views are seen from the Cupola, an observation deck module attached to the ISS in 2010 and comprising seven windows. So, what are the amazing sights that you can see from the space station?

Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: space exploration

What Is the Search for Extraterrestrial Intelligence Actually Looking For?

Four antennas of the Atacama Large Millimeter/submillimeter Array (ALMA). Credit: ESO

Four antennas of the Atacama Large Millimeter/submillimeter Array (ALMA). Credit: ESO

The Search for Extraterrestrial Intelligence (SETI) last week got a $100 million dollar shot in the arm from the wealthy, Russian Silicon Valley entrepreneur Yuri Milner.

At the London launch of this new project, dubbed Breakthrough Listen, Stephen Hawking made some inspiring observations:

To understand the universe, you must know about atoms — about the forces that bind them, the contours of space and time, the birth and death of stars, the dance of galaxies, the secrets of black holes.

But that is not enough. These ideas cannot explain everything. They can explain the light of stars, but not the lights that shine from planet Earth. To understand these lights, you must know about life, about minds.

Somewhere in the cosmos, perhaps, intelligent life may be watching these lights of ours, aware of what they mean. Or do our lights wander a lifeless cosmos – unseen beacons, announcing that here, on one rock, the universe discovered its existence.

Either way, there is no bigger question. It’s time to commit to finding the answer – to search for life beyond Earth. The Breakthrough initiatives are making that commitment. We are alive. We are intelligent. We must know.

Read More

CATEGORIZED UNDER: Space & Physics, Top Posts

How Astronomers Will Find Earth 2.0

By Sarah Scoles | July 16, 2015 4:34 pm

earth sun

While self-aware humans have long wondered whether Earth is the only place like itself, we — and our technology — are finally advanced enough to answer that question. And with that power, astronomy’s quest du jour is to find habitable (and potentially inhabited) Earth-esque planets.

To discover biology from afar, scientists peer into planets’ atmospheres in search of evidence that something on their surfaces breathes and metabolizes. But planets are small (cosmically speaking) and far away, and their stars outshine them. Because of that latter problem, astrobiologists currently favor focusing on worlds orbiting small, dim red dwarf stars. Their meager light still nearly blinds us to their planets’ atmospheres, but visibility is better than it would be near a star like the sun.

But it’s not just the star that matters – it’s the other planets too. Astronomers have generally been looking for solar systems like ours, the only inhabited one we know of. That is to say, tidy solar systems where the planets have regular orbits in a flat disk.

Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: exoplanets

Falling Into a Black Hole Might Turn You Into a Hologram

By Marika Taylor, University of Southampton | June 25, 2015 10:16 am

black hole

Many scientists believe that anything sent into a black hole would probably be destroyed. But a new study suggests that this might not be the case after all.

The research says that, rather than being devoured, a person falling into a black hole would actually be absorbed into a hologram – without even noticing. The paper challenges a rival theory stating that anybody falling into a black hole hits a “firewall” and is immediately destroyed.

Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: black hole

A Better Way to Forecast Dangerous Solar Storms

This August 2012 coronal mass ejection produced aurorae on Earth. Credit: NASA

This August 2012 coronal mass ejection produced aurorae on Earth. Credit: NASA

Solar storms start their lives as violent explosions from the sun’s surface. They’re made up of energetic charged particles wrapped in a complex magnetic cloud. As they erupt from the sun’s surface, they can shoot out into interplanetary space at speeds of up to 3,000 kilometers per second (that’s 6.7 million miles per hour). Depending on their direction of travel, these energetic storms can journey past Earth and other planets.

If a solar storm makes it to Earth, it can disrupt a variety of modern technologies including GPS and high-frequency communications, and even power grids on the ground, causing radio blackouts and citywide loss of power. It can also wreak havoc within the aviation industry by disrupting communication methods.

To combat related potential economic losses, affected industries have been seeking a solution that can provide them with at least 24 hours of warning. With enough lead time, they can safely change their operational procedures. For example, passenger planes can be rerouted or power grid transformers can begin the slow process of “winding down,” all of which require at least a day’s notice – a huge jump beyond the 60-minute advance warning currently common. By building on earlier research, my colleagues and I have come up with a technique we think can meet that 24-hour warning goal.

Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: Sun

5 Chemistry Breakthroughs That Shaped Our Modern World

By Mark Lorch, University of Hull | June 2, 2015 11:46 am

chemistry flasks

Did you know that the discovery of a way to make ammonia was the single most important reason for the world’s population explosion from 1.6 billion in 1900 to 7 billion today? Or that polythene, the world’s most common plastic, was accidentally invented twice?

The chances are you didn’t, as chemistry tends to get overlooked compared to the other sciences. Not a single chemist made it into Science magazine’s Top 50 Science stars on Twitter. Chemistry news just don’t get the same coverage as the physics projects, even when the project was all about landing a chemistry lab on a comet.

So the Royal Society of Chemistry decided to look into what people really think of chemistry, chemists and chemicals. It turns out most people just don’t have a good idea of what it is chemists do, or how chemistry contributes to the modern world.

This is a real shame, because the world as we know it wouldn’t exist without chemistry. Here’s my top five chemistry inventions that make the world you live in.

Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: chemistry

Why Astronomers Will Hate the Internet of Things

By Sarah Scoles | May 12, 2015 3:11 pm
Radio telescopes at the Very Large Array, the National Radio Observatory in New Mexico (Credit: Manamana/Shutterstock)

Radio telescopes at the Very Large Array, the National Radio Observatory in New Mexico (Credit: Manamana/Shutterstock)

A minor fracas between astronomers and robo-lawnmowers has been making headlines, which sounds painfully futuristic. At issue, whether the maker of Roomba can let its autonomous mower operate on restricted radio frequencies that telescopes use to observe the cosmos.

And the whole thing is futuristic in another, more subtle way, as well. Robot lawnmowers are just one of the many coming gadgets that will be incorporated into the Internet of Things, a wireless network in which even our everyday appliances will participate. And it’s that future that has astronomers on edge.

A Web of Nouns

The trouble began because iRobot doesn’t want its customers to have to do any physical labor — not cutting the grass and definitely not digging the trenches for the underground wires that most autonomous lawn mowers use to sense the edge of their domain. iRobot applied to the FCC to be allowed to use wireless broadcasters instead, at radio frequencies between 6240 and 6740 MHz. Problematically, though, space-based methanol also broadcasts radio waves at those frequencies. Methanol traces star formation and tells us about the evolution of our galaxy, which (taken to its extreme) tells us how we got here. To protect that band, the FCC says “all practicable steps shall be taken to protect the radio astronomy service from harmful interference.” And within that band, it prohibits “fixed outdoor infrastructure.” The National Radio Astronomy Observatory says iRobot’s guiding beacons violate that prohibition and insist the mower-bot stay 55 miles away from its telescopes. iRobot says nuh-uh, “there is little risk of interference,” and 12 miles is sufficient.

The "Internet of Things" may save us time and energy, but it's a headache fro astronomers. (Credit: Chesky/Shutterstock)

The Internet of Things  may save us time and energy, but it’s a headache fro astronomers. (Credit: Chesky/Shutterstock)

If one brand’s wireless landscape-eater can cause such a stir, just imagine what could happen when our world is full of self-adjusting, internet-connected devices all communicating wirelessly with each other and with the Web. They will all need to use the radio “spectrum,” but how they’ll split it up — and share it with astronomers, other industries, and the government — when more devices need a slice of the pie remains to be seen.

Smart thermostats can already make your house the temperature you want while monitoring the outdoor weather. Bluetooth beacons help you find your keys. Sensors monitor inventory and alert vending machine owners that Fruitopia is sold out. This is the Internet of Things, and it’s coming. “There are no spectrum bottlenecks for dedicated Internet of Things systems yet,” Kevin Ashton, co-founder and former executive director of Massachusetts Institute of Technology’s Auto-ID Center, told Bloomberg BNA, “but we are seeing Wi-Fi services get maxed out, as there are only so many channels you can cram into the available spectrum.”

Splitting up the Spectrum

The Internet of Things requires wireless devices. A Nest would look stupid with an Ethernet cable snaking out of its circumference. If your wearable glucose monitor had to be plugged into a router to work, you’d never get far from home. Each device operates at a specific radio frequency. In the US, the FCC controls who gets to use which frequencies. In some bands, anyone can transmit radio waves, as long as they stay below a certain power (most Internet of Things things operate here). Other bands require a license, which the government sells to organizations at (surely riveting) auctions. And, finally, some bands are reserved for radio astronomy. Check out this graphic to see how it’s parceled out:

(Credit: U.S. Department of Commerce)

(Credit: U.S. Department of Commerce)

The radio astronomy bands, however, only cover a tiny portion of the spectrum, while radio astronomers are interested in almost all of it. So while the Internet of Things may color within the lines of its own little boxes (which seems dubious if iRobot is a harbinger), objects in space have no such compunctions. They will continue to send out radio waves that have the same frequency as your video-chat dog-treat dispenser. And the signal from your dog’s sockeye-salmon biscuit video could completely swamp a signal that’s been traveling valiantly across space for billions of years. But as the spectrum gets more crowded, we’re more likely to see changes and challenges to its allocation — just like with iRobot — that bleed toward protected bands.

Radio Waves … from Space

Astronomers use radio telescopes like those in Green Bank, WV; Socorro, NM; Jodrell Bank, England; Arecibo, Puerto Rico; and Parkes, Australia to detect the radio waves coming from space. Although cosmic radio waves come from powerful sources like black holes, pulsars, and natural lasers, they have traveled a long way before hitting earthly antennas. Radio waves, like visible light, appear dimmer the farther you are from the source. If you are 1 light-year from a pulsar, and then you step back to 2 light-years, the radio waves will become four times dimmer. Step back 4 light-years, and the waves are 16 times dimmer. By the time radio waves get here, they’re way less than shadows of their former selves. A single cell phone placed on the Moon, for instance, would show up more powerfully in radio waves than almost anything else in the sky.

So when you put a cell phone right next to a telescope, or even miles away, it easily drowns out the pipsqueaks coming from space. Imagine trying to see a flashlight that someone was holding in front of the Sun (hint: rhetorical).

Quiet Zones

To protect their ability to do radio astronomy without the intrusion of your smartphone, astronomers put their telescopes in remote locations, preferably valleys surrounded by mountains that absorb radio waves trying to trespass from outside. But in a world full of radio-emitting devices, being away from population centers isn’t good enough. Any population is a problem — and not just because of the obvious suspects, like cell phones. Nearly any electronic device emits radio waves (proof? Turn on a portable radio, tune to an empty AM station, and hold it up to your refrigerator/fluorescent light/digital camera/oscillating fan).

The Green Bank telescope rests in a valley of the Allegheny mountains to shield the observations from radio interference. ( NRAO/AUI)

The Green Bank telescope rests in a valley of the Allegheny mountains to shield the observations from radio interference. ( NRAO/AUI)

Some observatories politely ask people to turn off their cell phones, as if this were the beginning of a movie and not the fate of our understanding of the universe. But others, like Green Bank, have established “radio-quiet zones,” where lots of normal things are against the law. For 13,000 square miles around the observatory — a region that includes parts of Virginia and Maryland as well as West Virginia — broadcasters have to fill out special paperwork to make sure the telescope can’t “see” their transmitters. If it can? Permit denied. So for an hour or so radius around Green Bank, you can’t get cell phone service, no matter how high you hold your iPhone in the air. “Keeping cell service out of the immediate vicinity hinders the utility of lots of gadgets which would potentially transmit on multiple bands, not just their link to the cellular service,” says Green Bank’s Carla Beaudet, the observatory’s radio-frequency interference engineer. “The National Radio Quiet Zone offers protection to Green Bank both directly and indirectly.”

In a smaller, 10-mile radius around the observatory, the rules are stricter: no Wi-Fi, no microwaves, no cordless phones, no wireless game controllers, no Bluetooth transfers. It’s an enforceable law, and NRAO has a truck that can track down rogue radio waves. Employees have knocked on doors to find shorted electric blankets, malfunctioning electric fences, contraband Wi-Fi routers, and once (at least according to legend) was plagued by the radio tracking collars on fast-moving squirrels.

Green Bank has the most well-known and oldest quiet zone, which was established in 1958 (not in small part because the government’s communications station Sugar Grove is just down the valley). But Australia, South Africa, and Chile — home to the next generation of radio telescopes — have or soon will have their own versions. “Geospatial exclusion areas like the National Radio Quiet Zone can go a long distance (pun intended) towards protecting specific radio astronomy facilities,” says Beaudet, “particularly if there is additional protection from terrain obstacles” (such as mountains).

Deafening Devices

But many telescopes — such as Arecibo — have only terrain obstacles, and no official protection. Soon, they may only be sensitive enough within the officially protected radio astronomy bands — and that’s only if corporations play by existing rules. “The extent to which the Internet of Things will be a threat to radio astronomy will depend upon whether the regulatory standards can be upheld in the face of the massive onslaught of lawyers funded by the private sector,” says Beaudet. “If the regulatory standards are upheld rather than modified every time somebody needs more spectrum, there will still be small windows of spectrum in which astronomers can observe.”

In the future, telescopes outside quiet zones may detect so much blah-blah-blah from our devices that they won’t catch the whispered conversation from space. But the people who live in those quiet zones won’t be able to fully inhabit the modern world. Their dogs will have to eat treats all alone. Their home heating systems will be woefully inefficient. They’ll never buy an app. (Note: Some want it that way and move to places like Green Bank because it’s electromagnetically old-school. )

If we live in a hyperconnected wireless world, which we already do, we learn less about the universe than we would if radio telescopes were the only technology in operation (at least until we can build a radio telescope on the Moon). But we’re not going to stop making smart devices and linking them together, nor should we. We will have to find a way to manage and balance those interests. Not every iRobot will get what it wants. Not every pulsar will be discovered. Conversations like the one between the National Radio Astronomy Observatory and iRobot are just beginning. Go get yourself some popcorn. You won’t believe what happens next.

CATEGORIZED UNDER: Space & Physics, Technology, Top Posts

Science and Religion Clash Over Telescope Construction on Sacred Summit

By Shannon Hall | May 9, 2015 2:44 pm
The existing telescopes on Mauna Kea. Image by flyingsinger via Flickr

The existing telescopes on Mauna Kea. Image by flyingsinger via Flickr

When Paul Coleman summits Mauna Kea, the dormant volcano in Hawai’i that rises 13,796 feet above the Pacific, he is struck by two things. First there are the colossal observatories, whose domes gleam in the sunlight by day and glimpse the farthest reaches of the universe by night. Second, there is the red dusted mountain itself, which in his religion is the home of the gods.

But Coleman, an astronomer at the University of Hawai’i and a native Hawaiian, may be one of the few people on Mauna Kea who can fully appreciate this dichotomy. Today, the sacred mountain has become a battleground between astronomers, Hawaiians and environmentalists. The issue is that astronomers have placed 13 telescopes at its summit and now wish to build one more: The Thirty Meter Telescope (TMT), which will be the largest and most powerful yet.

The telescope’s opponents argue that not only is the volcano sacred ground, it’s environmentally fragile land and also ceded land, meaning that it should be used for the benefit of native people. While the operators of the new telescope have held many conversations with Native Hawaiians, conducted a thorough environmental impact statement and proposed paying $1 million yearly for the land plus another $2 million yearly to support local education programs, the protestors say it’s not enough.

“Mauna Kea is our temple,” said Kealoha Pisciotta, one of a half-dozen plaintiffs suing to stop the project. “It’s not a question that we’re against astronomy. We’re just for Mauna Kea.”

But for astronomers like Coleman, the colossal telescope is also a temple. With a mirror nearly three times larger than any other on Earth, it will see deeper into the universe than any other ground-based telescope. And built with phenomenal optics in such a pristine location, it will produce sharper pictures than even the Hubble Space Telescope.

Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: telescopes

Why Astronomers Are Riveted By the Search for Nothing

By Carole Mundell, University of Bath | April 22, 2015 1:55 pm

supervoid

Astronomers have found evidence of a giant void that could be the largest known structure in the universe. The “supervoid” solves a controversial cosmic puzzle: it explains the origin of a large and anomalously cold region of the sky. However, future observations are needed to confirm the discovery and determine whether the void is unique.

The so-called cold spot can be seen in maps of the Cosmic Microwave Background (CMB), which is the radiation left over from the birth of the universe. It was first discovered by NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) in 2004 and confirmed by ESA’s Planck Satellite. For more than a decade, astronomers have failed to explain its existence. But there has been no shortage of suggestions, with unproven and controversial theories being put forward including imprints of parallel universes, called the multiverse theory, and exotic physics in the early universe.

Now an international team of astronomers led by Istvan Szapudi of the Institute for Astronomy at The University of Hawaii at Manoa have found evidence for one of the theories: a supervoid, in which the density of galaxies is much lower than usual in the known universe.

Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: cosmology

Humanity’s First Spacewalk, 50 Years Ago Today, Nearly Ended in Disaster

By Daniel Brown, Nottingham Trent University | March 18, 2015 4:57 pm
spacewalk2

NASA astronaut Nicholas Patrick on an EVA in 2010. Credit: NASA

It is 50 years since humans first encountered space – not Sputnik’s first orbit, nor Yuri Gagarin’s first spaceflight, but the first time a crew member stepped out from their spacecraft’s relative protection and immersed themselves in the cold, hostile emptiness of the vacuum.

On March 18, 1965, 30-year-old Russian cosmonaut Alexey Leonov completed a 12-minute spacewalk. This feat, and that of Gagarin and Sputnik before, was just one of the many achievements of the Soviet space program in the early years of the space race.

Leonov and others who followed him wore specially designed space suits, were tethered and later had helpful gadgets to move them around. Without the tether astronauts would have floated into empty space, with nothing to slow or change direction in frictionless space, with no rescue possible and only an inevitable death as their oxygen supply ran out. If this sounds daunting, imagine being the first ever to have faced this.

Only recently have we started to develop robotic equipment versatile and sensitive enough to carry out the complex tasks requiring fine motor skills taken for granted in any lab on Earth. Before then, astronauts had to walk in space and use these tools to repair satellites – such as the Hubble space telescope, which has given us the incredible science and images for the past 25 years. Spacewalks helped ensure we could walk on the moon, take samples and set up experiments.

Building the knowledge required to walk in space, and the robotic equipment to later help astronauts, also led toward the establishing of the US Skylab and Russian Mir orbital space labs, and their successor in the International Space Station (ISS).

Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: space exploration
NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

The Crux

A collection of bright and big ideas about timely and important science from a community of experts.
ADVERTISEMENT

See More

ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »