Category: Top Posts

Confessions of a Martian Rock

By Nina Lanza, Los Alamos National Laboratory | July 25, 2016 11:26 am
curiosity-rover

The Curiosity rover (Credit: NASA)

I look at rocks on Mars for a living—a lot of rocks. Because of this, I’ve gotten pretty good at knowing what to expect and what not to expect when analyzing the chemical make-up of a Martian rock. You expect to find lots of basalt, the building block of all planets.

What I didn’t expect were large amounts of manganese. So when my colleagues and I found exactly that on a Martian rock called “Caribou” back in 2013, we thought, “This has to be a mistake.”

Caribou Conundrum

Trace amounts of the element manganese typically exist in basalt. To get a rock with as much manganese as Caribou has, the manganese needs to be concentrated somehow. The rock has to be dissolved in liquid water that also has oxygen dissolved in it.

If conditions are right, the manganese liberated from the rock can then precipitate as manganese oxide minerals. On Earth, dissolved oxygen in groundwater comes from our atmosphere. We’ve known for some time now that Mars once had vast oceans, lakes and streams. If we could peer onto Mars millions of years ago, we’d see a very wet world. Yet we didn’t think Mars ever had enough oxygen to concentrate manganese—and that’s why we thought the data from Caribou must have been an error.

The Hunt Is On

So what do you do when you find a Martian rock with a chemistry you didn’t expect? You go look for more.

When NASA’s Curiosity rover arrived at the Kimberly region of Gale crater, we went to work, looking at the mineral-filled cracks in sandstones on the floor of what was once a deep lake. We used the ChemCam instrument, which sits atop Curiosity and was developed here at Los Alamos National Laboratory, to “zap” rocks on Mars and analyze their chemical make-up. (In less than four years since landing on Mars, ChemCam has analyzed roughly 1,500 rock and soil samples.)

When ChemCam fires its laser pulse, it vaporizes an area the size of a very small pinhead. The system’s telescope on the rover peers at the flash of glowing plasma created by the vaporized material and records the colors of light contained within it. This light allows us here on Earth to determine the elemental composition of the vaporized material.

And what did ChemCam discover? More rocks filled with manganese oxides. So Caribou was not a mistake — far from it.

Why Does Manganese Matter?

We never expected to find manganese oxides on Martian rocks because we didn’t think Mars ever had the right environmental conditions to create them. We can look to Earth’s geological record for an explanation. More than 3 billion years ago, Earth had lots of water but no widespread deposits of manganese oxides until after photosynthesizing microbes raised the oxygen levels in our atmosphere.

Although there was already plenty of other microbial life on Earth at this time, these new photosynthetic microbes used sunlight energy in a new way and created a new type of waste product in the process: oxygen.

mars-rocks

The Curiosity rover examines the Kimberley formation in Gale crater, Mars. In front of the rover are two holes from the rover’s sample-collection drill and several dark-toned features that have been cleared of dust (see inset images). These flat features are erosion-resistant fracture fills that are composed of manganese oxides, which require abundant liquid water and strongly oxidizing conditions to form. The discovery of these materials suggests that the Martian atmosphere might once have contained higher abundances of free oxygen than in the present day. (Credit: MSSS/JPL/NASA)

By adding oxygen to the atmosphere, these tiny microbes transformed Earth’s environment. Suddenly, minerals never before formed on Earth started being deposited, including manganese oxides. This monumental environmental shift is recorded in the chemistry of rocks of that age all over the world. Earth has never been the same since. (Some hypothesize that more complex life forms, such as humans, might never have developed without this atmospheric change.)

So to summarize: In the Earth’s geological record, the appearance of high concentrations of manganese marks a major shift in our atmosphere’s composition, from relatively low oxygen abundances to the oxygen-rich atmosphere we see today. The presence of the same types of materials on Mars suggests that something similar happened there. If that’s the case, what formed that oxygen-rich environment?

How Did It Get There?

One way oxygen could have gotten into the Martian atmosphere is from the breakdown of water when Mars was losing its magnetic field.

Without a protective magnetic field to shield the surface from ionizing radiation, that radiation split water molecules into hydrogen and oxygen. Mars’ relatively low gravity couldn’t hold onto the very light hydrogen atoms, but the heavier oxygen atoms remained behind. Rocks absorbed much of this oxygen, leading to the rusty red dust that covers the surface today. While Mars’ famous red iron oxides require only a mildly oxidizing environment to form, manganese oxides require a strongly oxidizing environment. Finding manganese oxides suggests that past conditions were far more oxidizing than previously thought.

What’s Next?

NASA’s Opportunity rover, which has been exploring Mars since 2004, also recently discovered high-manganese deposits in its landing site thousands of miles from Curiosity, which supports the idea that the conditions needed to form these materials were present well beyond Gale crater.

(Credit: NASA/JPL-Caltech/Arizona State University)

The Gale Crater captured by the Thermal Emission Imaging System (THEMIS) on NASA’s Mars Odyssey orbiter. (Credit: NASA/JPL-Caltech/Arizona State University)

Of course, it’s hard to confirm whether the ionizing-radiation scenario I’ve presented here for creating Martian atmospheric oxygen actually occurred. But it’s important to note that this idea represents a departure in our understanding of how planetary atmospheres might become oxygenated. So far, abundant atmospheric oxygen has been treated as a so-called biosignature, or a sign of existing life.

The next step in this work is for scientists to better understand the relationship between manganese minerals and life. On Earth, they are highly related—but they certainly don’t need to be.

So how can we tell whether the manganese on Mars might actually be made by microbes? The answer is lots and lots of laboratory experiments. If it’s possible to distinguish between manganese oxides produced by life and those produced in a non-biological setting, we can apply that knowledge directly to Martian manganese observations to better understand their origin.

In the meantime, we’ll keep our eyes trained on the Martian surface and see what other secrets it has to reveal.

 

Nina Lanza is a staff scientist at Los Alamos National Laboratory, which has built and operated more than 500 spacecraft instruments for national defense. That background gives the Laboratory the expertise to develop discovery-driven instruments like ChemCam and its souped-up successor, SuperCam, also developed by the Laboratory and scheduled for the Mars 2020 rover mission.

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: Mars, space exploration

What We’re Learning from the World’s Oldest Calculator

By Mike Edmunds, Cardiff University | July 21, 2016 2:58 pm
Antikythera mechanism

The Antikythera mechanism (Credit: Wikimedia Commons)

When we talk of the history of computers, most of us will refer to the evolution of the modern digital desktop PC, charting the decades-long developments by the likes of Apple and Microsoft. What many don’t consider, however, is that computers have been around much longer. In fact, they date back millennia, to a time when they were analogue creations.

Today, the world’s oldest known “computer” is the Antikythera mechanism, a severely corroded bronze artifact which was found at the beginning of the 20th Century, in the remains of a shipwreck near the Mediterranean island of Antikythera. It wasn’t until the 1970s that the importance of the Antikythera mechanism was discovered, when radiography revealed that the device is in fact a complex mechanism of at least 30 gear wheels. Read More

CATEGORIZED UNDER: Living World, Technology, Top Posts
MORE ABOUT: archaeology, computers

Extinction Looms for Easter Island’s Only Remaining Native Species

By Nathaniel Scharping | July 19, 2016 12:58 pm
DSCN0357

Jut Wynne at Rano Kao Volcano conducting reconnaissance for the cliff work to take place in August. (Credit: Rafael Rodriguez Brizuela)

On Easter Island, isolated in the middle of the vast Pacific Ocean, ten species of near microscopic insects are all that remain of the island’s native species — at least for now.

Hidden in volcanic caves that dot the island, the endemic insects of Rapa Nui eke out an existence in an increasingly imperiled habitat. Their ancestral homes, fragile gardens of moss and ferns, are endangered by tourists flooding into the tiny island, and hordes of invasive species threaten to crowd them out. The island may have been immortalized by its iconic Moai, monolithic stone statues standing some 40 feet tall, but its most important inhabitants are almost too small to be seen. Read More

CATEGORIZED UNDER: Environment, Living World, Top Posts

The Psychology of Pokémon Go Haters

By Carl Engelking | July 15, 2016 2:25 pm
niantic

(Credit: Niantic)

When Psy’s “Gangnam Style” broke YouTube, they refused to give it a single view.

When people soaked themselves during the ALS Ice Bucket Challenge, they called it a waste of water.

When Pokémon Go took the United States by storm after its release July 6, they went out of their way to tell friends, family and social network followers they would never play the game. They encouraged pocket monster trainers to grow up, pursue gainful employment or just get off their lawns. One writer, Mattie Lou Chandler, was compelled to publish “A Hater’s Guide to Pokémon Go.” Read More

CATEGORIZED UNDER: Mind & Brain, Top Posts
MORE ABOUT: psychology

Earth’s Biodiversity Has Fallen Below ‘Safe’ Levels? Ecologists Disagree

By Bridget Alex | July 14, 2016 5:12 pm
shutterstock_60076411

(Credit: Markus Gann/Shutterstock)

A new paper reports that over half of Earth’s land area has suffered biodiversity loss beyond “safe limits.”

The study, released Thursday in Science, compiles a global dataset of biodiversity change and compares it to human land use patterns. The analysis shows that 58 percent of Earth’s land, which is home to 71 percent of the human population, has surpassed a recently proposed safe limit for biodiversity loss, beyond which ecosystems may no longer support human societies.

While the news sounds dire, other ecologists contend that the very notion of setting “safe limits” is a danger in itself, and criticize this line-in-the-sand approach to assessing the planet’s ecological health. In fact, critics say setting a limit may do more harm than good. Read More

CATEGORIZED UNDER: Environment, Top Posts

Blame Your Subpar Fitness on That Neanderthal DNA

By Bridget Alex | July 13, 2016 11:26 am
Neanderthal-in-museum

A Neaderthal strikes a pose at the State Museum of Prehistory in Halle, Germany. (Credit: Bridget Alex)

Most of us harbor about 2 percent Neanderthal DNA, inherited when our ancestors bred with Neanderthals more than 50,000 years ago. This was revealed back in 2010, when geneticists salvaged enough fragments of ancient DNA from Neanderthal bones to piece together a full genome. The discovery squelched a longstanding debate over whether Neanderthals and modern humans met — they did — and mated — oh yeah.

But why do we only have 2 percent Neanderthal ancestry? And what are the effects of that Neanderthal DNA on living humans? And why did our ancestors survive and Neanderthals go extinct? We’ve attributed our supremacy to bigger brains, better diets and advanced technology, but there may be a subtler, less flattering explanation for our evolutionary success. Read More

CATEGORIZED UNDER: Living World, Top Posts

Could Goats or Cows Claim the Title of ‘Man’s Best Friend’?

By Catherine Douglas, Newcastle University | July 8, 2016 3:13 pm
goats-cows

(Credit: MustafaNC/Shutterstock)

Since the evolution of dogs from wolves tens of thousands of years ago, they have been selectively bred for various roles as guards, hunters, workers and companions. But dogs are not the only animal humans have domesticated, which suggests that although dogs get all the attention, there’s reason to argue other species could also deserve the title of “man’s best friend”.

Anthrozoology, the study of human-animal relationships, has established that dogs demonstrate complex communication with humans. Charles Darwin thought that dogs experienced love, but it was only in 2015 that Japanese scientists demonstrated what we all intuitively knew. Miho Nagasawa and colleagues sprayed the “love hormone” oxytocin up dogs’ noses, measured the loving gaze between dog and human, and then measured the oxytocin levels in the humans’ urine, finding them to be higher. Rest assured, dog owners, that science has verified your bond with your faithful hound. Read More

CATEGORIZED UNDER: Living World, Top Posts

The Chicken-hearted Origins of the ‘Pecking Order’

By Jack El-Hai | July 5, 2016 12:03 pm
shutterstock_355273247

A chicken gives another a peck. (Credit: tryptophanatic/Shutterstock)

At the turn of the twentieth century, a young Thorleif Schjelderup-Ebbe began vacationing with his wealthy parents, both sculptors, at a country retreat outside Kristiania (now Oslo), Norway, where he immersed himself in the lives of birds in the barnyard.

He gave them names, closely watched how they behaved, and learned how to recognize one from the other. He “became terribly interested in chickens, terribly interested,” Schjelderup-Ebbe’s son Dag recounted in 1986 in an interview published in Human Ethology Bulletin. Read More

CATEGORIZED UNDER: Living World, Top Posts

These Spacecraft Will Visit Jupiter After Juno

By Jordan Rice | July 4, 2016 7:00 am
Hubble captured stunning images of auroras in Jupiter's atmosphere. (Credit: NASA, ESA)

Hubble captured stunning images of auroras in Jupiter’s atmosphere. (Credit: NASA, ESA)

Juno (JUpiter Near-polar Orbiter) is the sixth spacecraft to study Jupiter (give or take a few gravity assists), but will be the second to fall into orbit around the gas giant following the Galileo probe in 1995.

It is part of NASA’s New Frontiers space exploration program that specializes in researching the celestial bodies of the solar system. Juno was launched on August 5th, 2011 from Cape Canaveral Air Force Station in Florida and intended to be placed in a polar orbit around Jupiter to study the planet’s composition, magnetic and gravity fields, and the polar magnetosphere. Even though Juno’s scientific mission only lasts for a year, many more spacecraft are headed Jupiter’s way. Read More

CATEGORIZED UNDER: Space & Physics, Top Posts

Digital Deception: How to Spot a Lie Online

By Tom van Laer, City University London | June 29, 2016 9:58 am
shutterstock_191724437

(Credit: albund/Shutterstock)

There are three things you can be sure of in life: death, taxes – and lying. The latter certainly appears to have been borne out by the UK’s recent Brexit referendum, with a number of the Leave campaign’s pledges looking more like porkie pies than solid truths.

But from internet advertising, visa applications and academic articles to political blogs, insurance claims and dating profiles, there are countless places we can tell digital lies. So how can one go about spotting these online fibs? Well, Stephan Ludwig from the University of Westminster, Ko de Ruyter from City University London’s Cass Business School, Mike Friedman of the Catholic University of Louvain, and yours truly have developed a digital lie detector – and it can uncover a whole host of internet untruths.

In our new research, we used linguistic cues to compare tens of thousands of emails pre-identified as lies with those known to be truthful. And from this comparison, we developed a text analytic algorithm that can detect deception. It works on three levels.

1. Word Use

Keyword searches can be a reasonable approach when dealing with large amounts of digital data. So, we first uncovered differences in word usage between the two document sets. These differences identify text that is likely to contain a lie. We found that individuals who lie generally use fewer personal pronouns, such as I, you, and he/she, and more adjectives, such as brilliant, fearless, and sublime. They also use fewer first-person singular pronouns, such as I, me, mine, with discrepancy words, such as could, should, would, as well as more second-person pronouns (you, your) with achievement words (earn, hero, win).

Fewer personal pronouns indicate an author’s attempt to dissociate themselves from their words, while using more adjectives is an attempt to distract from the lie through a flurry of superfluous descriptions. Fewer first-person singular pronouns combined with discrepancy words indicate a lack of subtlety and a positive self-image, while more second-person pronouns combined with achievement words indicate an attempt to flatter recipients. We therefore included these combinations of search terms in our algorithm.

2. Structure Scrutiny

Another part of the solution lay in analyzing the variance of cognitive process words, such as cause, because, know and ought – and we identified a relationship between structure words and lies.

Liars cannot generate deceptive emails from actual memory so they avoid spontaneity to evade detection. That does not mean that liars use more cognitive process words overall than people who are telling the truth, but they do include these words more consistently. For example, they tend to connect every sentence to the next – “we know this happened because of this, because this ought to be the case”. Our algorithm detects such usage of process words in communications.

3. Cross-email Approach

We also studied the ways in which a sender of an email alters their linguistic style while exchanging a number of emails with someone else. This part of the study revealed that as the exchange went on, the more the sender tended to use the function words that the receiver was using.

Looking for love: but are they lying? (Credit: Shutterstock)

Function words are words that contribute to the syntax, or structure, rather than the meaning of a sentence – for example an, am, to. And senders revised the linguistic style of their messages to match that of the receiver. As a consequence, our algorithm identifies and collects such matching.

Exciting Applications

Consumer watchdogs can use this technology to assign a “possibly lying” score to advertisements of a dubious nature. Security companies and national border forces can use the algorithm to assess documents, such as visa applications and landing cards, to better monitor compliance with access and entry rules and regulations. Secretaries of higher education exam committees and editors of academic journals can improve their proofing tools for automatically checking student theses and academic articles for plagiarism.

In fact, the potential applications go on and on. Political blogs can successfully monitor their social media interactions for textual anomalies, while dating and review sites can classify messages submitted by users on the basis of their “possibly lying” score. Insurance companies can make better use of their time and resources available for claim auditing. Accountants, tax advisers, and forensic specialists can investigate financial statements and tax claims and find deceptive smoking guns through our algorithm.

Humans are startlingly bad at consciously detecting deception. Indeed, human accuracy when it comes to spotting a lie is just 54 percent, hardly better than chance. Our digital lie detector, meanwhile, is 70 percent accurate. It can be put to work to fight fraud wherever it occurs in computerized content and as the technology evolves, its Pinocchio warnings can be wholly automated and its accuracy will increase even further. Just as Pinocchio’s nose reflexively signaled falsehood, so does our digital lie detector. Fibbers beware.

The Conversation

This article was originally published on The Conversation. Read the original article.

CATEGORIZED UNDER: Technology, Top Posts
NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

The Crux

A collection of bright and big ideas about timely and important science from a community of experts.
ADVERTISEMENT

See More

ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Collapse bottom bar
+