Why We Snap: From Road Rage to Barroom Brawls

By Carl Engelking | January 13, 2016 2:03 pm
snap2

In LIFEMORTS, the “I” stands for the “Insult” trigger, which can easily provoke rage.

R. Douglas Fields, a neurobiologist in his 50s, won’t hesitate to lock a pickpocket into a deadly chokehold in the middle of the street. He’s done it before.

Fields isn’t a badass, crime-fighting martial artist whose cover is his day job in the lab — he’s just like everyone else. But when his wallet was snatched while traveling in Barcelona with his 17-year-old daughter in 2010, you could say he just, well, snapped. He didn’t have time to think. He jumped into action.

DougFields

R. Douglas Fields

He got his wallet back.

That incident in Spain stuck with Fields, and it inspired his new book, Why We Snap: Understanding the Rage Circuit in Your Brain. Fields is a senior investigator at the National Institutes of Health in Maryland and the editor-in-chief of Neuron Glia Biology. He set out to understand the rage circuit and examined the latest research into human aggression.

Most violent behavior, Fields discovered, results from a clash between our evolutionary hardwiring and our modern world. To put it bluntly: Our rage circuit wasn’t designed for daily commutes on crowded highways or the deluge of social media affecting our relationships. Through his research, Fields outlines the nine primary triggers of the human rage circuit and puts them into the handy mnemonic LIFEMORTS: Life-or-death situation, Insult, Family, Environment, Mate, Order in society, Resources, Tribe and Stopped (being restrained or cornered).

Discover spoke with Fields about his investigation, and it turns out that our rage response is a complex double-edged sword that helps us and hurts us. You can listen to the interview below, or continue reading an edited version.


Discover: Snapping, or flipping out, is commonly seen as a negative response to a given situation. But in the book, you present a more agnostic view of this response. It’s both good — it’s essential for our survival — and bad. Can you explain the mechanisms that cause us to snap, and why they are both good and bad for us?

Fields: We call it snapping only when the outcome is inappropriate. But if you look inside the brain and look at the mechanisms that have been activated, it’s the same process that’s vital to responding quickly to any threatening situation. This mechanism isn’t in the cerebral cortex, it’s not conscious, because cortical thinking is too slow in a sudden, dangerous situation.

It involves neurocircuits of threat detection and sudden aggression. We need these circuits; we wouldn’t have them if we didn’t need them. That’s the double-edged sword of snapping.

What are the basic triggers for why we snap, and how did you narrow the myriad triggers that set people off into nine categories?  

F: It seems like anything can set off this response, but I took a different approach. Rather than taking a psychological approach, I took a neuroscience approach. I decided to look at the neural circuits in the brain that produce sudden aggression. What new research is showing is that there are different circuits for different kinds of triggers for sudden aggression. Of course, scientists use different names for these neural circuits, but much of communicating to the public is getting over the jargon.

For the purposes of communicating — but more importantly, for the purposes of understanding and controlling the aggressive snap responses — it was necessary to identify the triggers very quickly. I’ve taken these circuits of sudden aggression in the brain and separated them into nine triggers. I came up with the mnemonic LIFEMORTS because it’s chunked into your memory as life/death.

For example, what scientists would call maternal aggression, in LIFEMORTS that becomes “F” for “Family.” That’s how I did it, and that’s what’s unique. It’s based not on the behavior, but on the new neuroscience tracing out these circuits in the brain.

These are all independent circuits. In the past, people thought rage or fear all came from one part of the brain, and that’s just overly simplistic.

snap1

The Mate or Family trigger — violence used to protect family members or mates — appears to have sparked this altercation.

One of the most fascinating revelations from the book was the amount of information our brains process subconsciously. Can you talk a little about the work our brains are doing without our knowledge?

We think of conscious functions in the brain, but we don’t realize how much information processing is going on unconsciously. We can hold only a tiny fraction of the sensory information coming into our brains in our consciousness; most of this is going on unconsciously. We talk about this as trusting your gut.

Your amygdala gets sensory input from every one of your senses through a high-speed pathway reaching the threat-detection mechanism before it even goes to the cortex, where we have conscious awareness. That’s because your unconscious brain is surveying the world for threats. When it calculates that we’re in danger, it communicates that to the cortex with emotions like fear, anger or anxiety.

In general, people do not appreciate how much the brain is doing below the level of consciousness. You may not be able to put your finger on what’s wrong; If you suddenly just don’t feel right, you back off. Your brain is taking in enormous amounts of information and calculated there’s something wrong.

why-we-snapHow do our genes dictate the way we’ll respond to danger, or the sight of other people in danger?

F: Genes are a big part of it, as in everything in biology. It’s a mixture of genes, environment and chance. Different people will respond differently to the same situation. The genetic factors are those that affect this network of threat detection in the brain, which, by the way, spans from the frontal lobes all the way to the hypothalamus — it’s not a lizard brain.

We know many of these genes, and they are genes that affect the circuitry and production neurotransmitters like, for example, dopamine. That’s part of the reason why different people will have different reactions to the same threat.

How much of this can we actually control? Can we contain or channel our snaps to either stifle them in difficult situations, or direct that energy in a positive way? Is awareness of the triggers enough, or are we simply hostages to the hormones and firing synapses in our brains?

F: Most of the time, this mechanism works amazingly well. When we start talking about controlling the mechanism, we are talking about trying to prevent the misfires. Yes, I think that you can control it.

In fact, I’ve interviewed elite athletes, Secret Service agents and members of SEAL Team 6, and they control it. They have to. Understanding the mechanism helps to control it, but being able to identify why you are suddenly angry allows you then to disarm this response when it’s inappropriate.

Where does road rage fit into LIFEMORTS?

It turns out that road rage hits on all nine of them — little wonder. It’s a great one because we’re all familiar with rage on the highway, and it’s so bewildering.

These circuits in our brain evolved in our brain for a different world, a different time. In the modern world, many of these defensive triggers get tripped — inappropriately — by conditions that didn’t exist before. Driving is just full of them.

When somebody cuts in front of you, you suddenly find yourself overwhelmed with anger. But why? It really doesn’t make sense. If the purpose of driving is getting somewhere safely, a person in front of you or behind you will only make a few seconds’ difference. If you’re running in a field during a foot race and someone cuts in front of you, it wouldn’t evoke the same kind of anger, and you might even laugh. There’s something peculiar about the act of driving that causes this sudden anger.

One of the LIFEMORTS triggers is “E” for “Environment,” and that is to protect your home and property. Many mammals have this, and certainly humans do. It’s fundamental to our biology. When somebody cuts in front of you, we perceive that space in front of our car as our property. That trips this trigger that is designed to elicit sudden aggression to get into a physical battle with an intruder in your property. Once you can recognize why you are angry, rather than suppress it, suddenly it goes away. Suddenly it’s disarmed. It’s a misfire.

snap3

When someone tries to enter your home, it will trip the “E” trigger for “Environment.” Our brains are wired to respond forcefully when someone trespasses on our territory.

Q: How do seemingly normal, sane people suddenly become killers?

A: Every day we read about violence, murder and mayhem not caused by people who are mentally ill. It’s people who suddenly snap in rage, and in many cases — domestic disputes or barroom brawls — the person ends up snapping and murdering a person they are close to, even a loved one.

When I read about snapping in the newspaper, it’s left as a mystery because we don’t understand the backstory. There’s always a reason in these instances, and that information doesn’t get into the news story.

We all have the capability for violence. It’s wired into our brain over the struggle of evolution. We need it for protection. We needed it to kill animals. It doesn’t need to be taught. Unfortunately, it can be triggered inappropriately. One thing that is always behind this is a chronic stress that isn’t understood. Stress puts these triggers for violence on edge.

With 2016 being an election year, I have to ask: Do politicians, to a certain extent, manipulate the LIFEMORTS triggers for their benefit?

F: Two that we are seeing are the “Tribe” trigger and the “Environment” trigger. The “Tribe” trigger is that human beings will separate into groups, us versus them, and they will use violence to maintain those groups. In early times, strangers, or a strange group, was a threat. A lot of what we see going on in talks about refugees and how to handle borders are all examples of the “E” and “T” trigger.

You can define “us and them” in many terms, and we have to be careful in how we are manipulated into defining “them.” In any election, we should be aware when politicians are pushing on these triggers. The hopeful side is that these triggers will also unite us. When we saw that picture of the refugee whose family had been killed and washed up on the beach, everything changed. When we saw that man in the picture, we saw ourselves. We saw that he was part of our tribe. He may be a Syrian, but he was a father, a family man. He was us.

 

Image credits (excluding book cover and R. Douglas Fields): Everett Collection/Shutterstock

CATEGORIZED UNDER: Mind & Brain, Top Posts

Lucid Dreamers May Help Unravel the Mystery of Consciousness

lucid_dreamer

(Credit: Hartwig HKD/Flickr)

We spend around six years of our lives dreaming – that’s 2,190 days or 52,560 hours. Although we can be aware of the perceptions and emotions we experience in our dreams, we are not conscious in the same way as when we’re awake. This explains why we can’t recognize that we’re in a dream and often mistake these bizarre narratives for reality.

But some people – lucid dreamers – have the ability to experience awareness during their dreams by “re-awakening” some aspects of their waking consciousness. They can even take control and act with intention in the dream world (think Leonardo DiCaprio in the film Inception). Read More

CATEGORIZED UNDER: Mind & Brain, Top Posts

How Scientists Detect Nuclear Explosions Around the World

By Carl Engelking | January 6, 2016 4:34 pm
shutterstock_317339885

(Credit: CUTWORLD/Shutterstock)

The world was literally shaken before news broke that North Korea detonated what leaders in the Hermit Kingdom claimed was a hydrogen bomb Tuesday morning local time.

Officials and experts around the world quickly cast doubt on that claim, as the amount of energy produced by the explosion was likely too small to be that of a hydrogen bomb. Instead, early evidence suggests North Korea may have instead detonated a boosted-fission bomb, which produces a smaller explosive yield. It will likely take several more days to determine what kind of nuclear device Pyongyang actually detonated. Read More

CATEGORIZED UNDER: Environment, Top Posts

The Limits of Fight-or-Flight Training

By Ben Thomas | January 5, 2016 11:30 am
fight-or-flight

(Credit: Adam Ziaja/Shutterstock)

The soldiers at Checkpoint 56 ordered the woman to stop.

She was Palestinian, the soldiers were Israeli, and this checkpoint divided the Israeli and Palestinian-controlled sections of Hebron on the West Bank. The checkpoint’s metal detector had gone off when the woman walked through. The soldiers ordered her to raise her veil. She refused.

Then she pulled a knife. Read More

CATEGORIZED UNDER: Mind & Brain, Top Posts

3 Implications of Memory-Boosting Devices

By Ben Thomas | December 22, 2015 3:18 pm
shutterstock_118623172

Scientists are only beginning to advance memory-enhancing technology research, but even in this early stage, there are questions that deserve consideration. (Illustration credit: Brian A Jackson/Shutterstock)

In fall, DARPA announced a major success in its Restoring Active Memory (RAM) program. Researchers implanted targeted electrical arrays in the brains of a few dozen volunteers — specifically in brain areas involved in memory.

The researchers found a way to read out neural “key codes” associated with specific memories, and then fed those codes back into the volunteers’ brains as they tried to recall lists of items or directions to places. While the results are still preliminary, DARPA claims that the RAM technique has already achieved “promising results” in improving memory retrieval.

Intriguing as this implant is, it’s only the latest in an ongoing series of neurological techniques and gizmos designed to boost and sharpen memory. The effects and implications of these systems raise questions that are worth consideration. Read More

CATEGORIZED UNDER: Mind & Brain, Technology, Top Posts

How GMOs Will Let Astronauts Live on Mars

By Sarah Scoles | December 18, 2015 11:57 am
astrobiology

(Credit: NASA)

Don’t panic, future astronauts, but GMOs will probably accompany you on your adventures to deep space.

Scientists hope to genetically engineer organisms to survive off-Earth and to do some of the dirty work on spaceships and other planets. The field of study is called “space synthetic biology.” And this new frontier in genetic research could be key to opening up the final frontier.

Biology as Technology

Synthetic biology refers, generally speaking, to the work of giving some organism altered or even novel characteristics by changing its genes. Space synthetic biologists genetically alter organisms to make them more space-worthy — resistant to radiation or heat, for instance — and to make them useful to space missions — like turning Martian dirt into concrete. It sounds “out-there,” but microbes already make our planet habitable and pleasant.

“We’re breathing oxygen that was biologically produced,” says Lynn Rothschild, the head of the synthetic biology program at NASA’s Ames Research Center. “I’m wearing cotton that was biologically produced.”

We’re not going to take sheep on space missions, she clarifies, but we could take the capabilities of oxygen- and cotton-making plants and put them into the DNA of more portable life, like yeast. “Start looking at biology as technology,” she says, a “genetic hardware story” that could infuse all aspects of space missions.

astrobiology_2

A petri dish with specimens lit by LED lights at an Ames Research Center laboratory. (Credit: NASA)

Rothschild advises the Stanford-Brown team in the International Genetically Engineered Machine competition, where her groups have, among other things, made wires using DNA as a template; created a biodegradable drone; and taken genes from extreme bacteria and inserted them into E. coli to create hybrid organisms that resist extreme pH, temperature, and dryness. They called it the Hell Cell.

Such bio-based technology, according to a November report from a team led by Amor Menezes California Institute for Quantitative Biosciences in Berkeley, requires 26-85 percent less mass than “abiotic” (non-living) systems. For instance, a spaceship could carry a habitat to Mars, like the Apollo missions did to the moon, but no one wants to live in a tin can, and also that tin can is heavy.

“Think in analogy with early long-term travel on Earth,” says Rothschild, like pilgrims to North America. “They didn’t bring houses. They learned to live off the land.”

Jobs for Microbes…in Space

Future astronauts will have to live off of inhospitable land and also spaceships, which have no land. Menezes’s report sets forth a plan for those astronauts, suggesting directions the research could go. The microbes we use for terrestrial composting and waste treatment, for instance, produce nitrous oxide, which is spaceship go-juice. We could genetically engineer those microbes to do their duties in space, with different oxygen requirements and faster reaction capabilities but the same basic chemistry. Just by pooping and making trash, then, astronauts could create the raw material for fuel.

Once those refuse-creating colonists arrive on Mars, they could use carried-on microbes to mine the materials for building their new homes. Microbes that make acid could dissolve the Martian rock that surrounds metals, leaving just “the resource.” Or we could engineer microbes to dissolve the resource itself, so that it flows out and can then be reconstituted into a colonial outpost.

Construction companies on Mars could take the “regolith,” or surface material, and bind it together using natural glue, like mussel foot protein (engineered for optimal performance on Mars). Scientists could also make microbes that chew on the regolith and spit out calcium or iron to make “biocement.”

Leftovers!

Poop processing, manufacturing, and construction all leave behind useful byproducts, like methane, which could help keep the colony’s lights on. The outpost, while electrified, wouldn’t have many frills. But scientists do have to ensure astronauts’ basics: air, water, and food, indefinitely.

F1.large

The six major challenges for space synthetic biology. (Credit: Hugo Teixeira via Royal Society Interface)

Menezes recommends that we develop space-friendly microbes that can turn byproducts of wastewater treatment into food (yum!). While the food doesn’t have to be Michelin-star-quality, it does have to qualify as “nutrient-dense biomass that supplements astronaut dry-food while being versatile in flavor and texture.”

If the walls of a ship or colony were alive (it’s not creepy), the microbes could up-cycle carbon dioxide into oxygen and would — bonus! — shield astronauts from radiation. Not only does radiation zap our DNA with cancerous mutations, it also makes medicines expire faster.

Engineering the Medicine Cabinet

People will still get sick in space, so synthetic biologists are also working on bio-based medical care. Microorganisms and plants could be engineered to make medicines and to shift the microbiome — the community that lives in symbiosis with each of us — back into order.

“If astronauts could grow their medicine in algae I think that would be super cool,” says Josiah Zayner, a space synthetic biologist at NASA’s Ames Research Center, who was not an author on the paper, “but I think it would take a lot of money and resources to make this happen.”

But what if the ship or colony were even more alive, Menezes wonders, full of biosensors and biological control systems? If it sounds a little too Battlestar Galactica-Cylon for comfort, don’t worry yet, says Zayner. “Honestly, I think this is just their ‘out there’ idea,” he says. “Systems that they are describing have not really been invented yet. They lost me at ‘hybrid robot version of tumor killing bacteria.’”

Me too.

But it’s not that out there, contends Menezes.

“The space cybernetics grand challenge essentially calls for implementing control systems ideas into biological systems,” he says — the same control systems that put people on the moon and let Curiosity rove on Mars. But with biology. Integrating the two with technology will “take some time,” he continues, but “complete and tested space synthetic biology systems should be ready within a couple of decades, and if not in time for the first U.S. human Mars expedition, certainly by the second or third one.”

75997main_marshabitat

An artist’s rendering of Martian living quarters covered with soil to shield the crew from the sun’s radiation. (Credit: NASA)

But even a cybernetic ship or colony with living walls, algae gardens, and nutrient-dense biomass isn’t quite enough for a self-sustaining, long-lived Martian habitat. To create that, we either need to make Mars a planet like Earth — or we need to make a miniature Earth on Mars.

To “terraform” a planet is to Earthify it. But “paraterraforming” is the more realistic step down: turning a smaller, contained space into a self-sustaining, human-friendly place. In the case of Mars, this would be a habitable spot surrounded by god-awful instant-death desert. Scientists would have to engineer an entire ecosystem that creates what astronauts need to eat, drink, breathe, and stay healthy, sane, and productive. All while recycling their waste products and keeping their environment cut off from the aforementioned god-awful instant-death desert — using microbes.

“This, I think should be the number-one research goal before missions to Mars,” says Zayner.

Reality Check

And the missions to Mars are what Menezes’ report looks toward.

“All of this is coming from the viewpoint of making it to Mars in the next 20 years and not from the viewpoint of what synthetic biology will be doing in 20 years,” says Zayner, “because that is extremely hard to plan for.” And it depends on the available of both cash and people to do the job.

Zayner also cautions that any life-based space systems will need to be tested and built years before they appear on a crewed capsule or a colony on the Red Planet. As a result, the bleeding-edge technology that exists when a Mars mission launches probably won’t be part of that Mars trip — well-characterized, older technology likely will be. That’s true in any space mission, which engineers blueprint and begin building many years before launch.

But Menezes says the gap between prototype and practical use is shrinking, largely because the space industry is no longer run entirely by a government.

“Just yesterday, I learned that there was a recent project that went from concept idea to actual space deployment within six months,” he says. “Although this timeline is atypical at the moment, with the advent of commercial space ventures, it is now possible to partner to quickly test and characterize fruitful ideas in space.”

But after the ship launches with its promising technology, problems could arise on Mars, too. The regolith that we might use for construction contains perchlorates, salts that can be toxic to humans. Toxic bricks do not an ideal colony build.

“Perchlorates are certainly a problem at the moment,” says Menezes. But we could figure out how to deal with those, and, in our initial attempts at exploiting Mars’s resources, use Mars’s air instead of its land. “For instance, 95 percent of the Mars atmosphere is carbon dioxide. This carbon dioxide will be the primary carbon source for the microbes.”

While making our own special-snowflake space biology sounds sci-fi, non-fictional scientists are working to make the concepts nonfictional, too. To engineer organisms that will be useful on other planets, they first look to our own world and its biology. And in altering and organizing those biological beasts into useful space systems, scientists will also learn how to make life better back on Earth.

“The possibilities of space synthetic biology are truly endless, yet each of them has immense importance back on Earth,” says Menezes.

Synthetic biological solutions to space problems in medicine, food, and carbon dioxide can address similar issues on Earth: personalized medicine, agriculture for growing populations, and fixing our carbon-dioxide-laden atmosphere. And while paraterraformed spaces give astronauts a safe place to sleep, the technologies can also help us learn to live sustainably on Earth. A Martian colony would be the ultimate zero-waste green space, whose ethos every earthling should get behind.

“I find the notion of doing ‘far-out space stuff’ that is simultaneously a priority on Earth really captivating and compelling,” says Menezes.

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: Mars, space exploration

Ever Dreamed of Becoming an Astronaut? Now’s Your Chance

By Yvette Cendes, The University of Amsterdam | December 14, 2015 4:37 pm
astronaut2

Astronaut Mark C. Lee floats freely above Earth as he tests equipment in a 1994 spacewalk. (Credit: NASA)

Looking for a new job that will literally take you places? On Monday, NASA started receiving applications for the astronaut class of 2017.

Members from this class will participate in an unprecedented transition at NASA as one of the approximately four American astronauts who visit the International Space Station (ISS). The new crop of astronauts will also comple commercial crew spacecraft missions, and perhaps even strap into Orion vehicle for deep space. And by meeting a few preliminary qualifications, you have a chance to play a direct role in these exciting times — and collect a paycheck. Read More

CATEGORIZED UNDER: Uncategorized

Stonehenge Wasn’t the First ‘Second-Hand’ Prehistoric Monument

By Mike Parker Pearson, University College London | December 11, 2015 2:59 pm
shutterstock_156286739

(Credit: Fulcanelli/Shutterstock)

I led the team of researchers that discovered that Stonehenge was most likely to have been originally built in Pembrokeshire, Wales, before it was taken apart and transported some 180 miles to Wiltshire, England. It may sound like an impossible task without modern technology, but it wouldn’t have been the first time prehistoric Europeans managed to move a monument.

Archaeologists are increasingly discovering megaliths across the continent – albeit a small number so far – that were previously put up in earlier monuments. Read More

CATEGORIZED UNDER: Environment, Top Posts
MORE ABOUT: archaeology

How Terrorist Attacks Influence Mental Health

By Daniel Antonius, The State University of New York | December 4, 2015 11:26 am
shutterstock_339140633

A growing body of research examines the psychological aftermath of terrorist attacks, such as the coordinated attacks in Paris on Nov. 13. (Credit: Stacey Newman / Shutterstock.com)

On November 13 2015, a series of coordinated attacks in Paris left 130 people dead. A week later, armed gunmen stormed a hotel in Mali, seizing hostages while also firing indiscriminately at guests, killing 27 people. And this week a mass shooting in San Bernardino, California, left 14 dead. While the motive is not known, the FBI has assigned counterterrorism agents to the case, sparking public speculation that the shooting may have been an act of terrorism.

You could spend hours every day watching, reading and listening to news related to these events. This level of exposure can significantly influence your worldviews and how you live your life. Read More

CATEGORIZED UNDER: Mind & Brain, Top Posts
MORE ABOUT: psychology

Beyond Mars: The Distant Future of Space Exploration

By David Warmflash | December 3, 2015 12:19 pm
101883main_C91_08781_1200x900

An artist’s rendering of a multifunction Mars base. (Credit: NASA/Glenn Research Center)

Louis Friedman has always balanced his optimistic vision for the future of human space exploration with a dose of reality, and his tempered outlook courses through his new book, Human Spaceflight From Mars to the Stars, in which he charts the distant future of human space travel.

Friedman is optimistic that human space exploration will continue well into the future. However, here’s that dose of reality from Friedman: humans will never venture beyond Mars, at least not in any historically significant way. Once humans tame Mars, how will humanity continue to explore cosmic frontiers, and to what end? Space travel, according to Friedman, will be an act more focused on transporting our minds — with the help of new technologies — rather than our bodies. Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: Mars, space exploration
NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

The Crux

A collection of bright and big ideas about timely and important science from a community of experts.
ADVERTISEMENT

See More

ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Collapse bottom bar
+