Tag: accelerating expansion

The Brilliant “Blunder” That Led to a Nobel Prize

By Amir Aczel | October 6, 2011 2:17 am

In 1917, a year after his general theory of relativity was published, Einstein tried to extend his field equation of gravitation to the universe as a whole. The universe as known at the time was simply our galaxy—the neighboring Andromeda, visible to the naked eye from very dark locations, was thought to be a nebula within our own Milky Way home. Einstein’s equation told him that the universe was expanding, but astronomers assured him otherwise (even today, no expansion is evident within the 2-million-light-year range to Andromeda; in fact, that galaxy is moving toward us). So Einstein inserted into his equation a constant now known as “lambda,” for the Greek letter that denoted it. Lambda, also called “the cosmological constant,” supplied a kind of force to hold the universe from expanding and keep it stable within its range. Then in 1929, Hubble, Humason, and Slipher made their monumental discovery using the 100-inch Mount Wilson telescope in California of very distant galaxies and the fact that they were receding from us—implying that the universe was indeed expanding, just as Einstein’s original equation had indicated! When Einstein visited California some time later, Hubble showed him his findings and Einstein famously exclaimed “Then away with the cosmological constant!” and never mentioned it again, considering lambda his greatest “blunder”—it had, after all, prevented him from theoretically predicting the expansion of the universe.

Fast forward six decades to the 1990s. Saul Perlmutter, a young astrophysicist at the Lawrence Berkeley Laboratory in California had a brilliant idea. He knew that Hubble’s results were derived using the Doppler shift in light. Light from a galaxy that is receding from us is shifted to the red end of the visible spectrum, while a galaxy that is approaching us has its light shifted to the blue end of the spectrum, from our vantage point. The degree of the shift is measured by a quantity astronomers call Z, which is then used to determines a galaxy’s speed of recession away from us (when Z is positive and shift is to the red).

Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

The Crux

A collection of bright and big ideas about timely and important science from a community of experts.
ADVERTISEMENT

See More

ADVERTISEMENT
Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »