Tag: athlete’s foot

Freedom From Fungus: Why Don’t Humans Have Chestnut-Style Blights and White Nose-Style Syndromes?

By Sarah Zhang | May 16, 2012 12:59 pm

Sarah Zhang is Discover’s web intern. See her blogging here and here, and follow her on Twitter at @sarahzhang.

 

Indiana constitution tree Dutch elm disease
Delegates to Indiana’s constitutional convention worked under this tree in 1816.
It later succumbed to Dutch elm disease.

Unless you have a weakened immune system or a stubborn case of athlete’s foot, it’s unlikely you spend much time worrying about fungi. And you shouldn’t—fungal diseases are not generally a big problem for a healthy person; common ones like athlete’s foot are annoying but not serious. In terms of infections, it’s bacteria, parasites, and viruses that kill us.

But the rest of nature tells a different story. According to a recent review of fungal diseases in Nature, fungi are responsible for 72% of the local extinctions of animals and 64% among plants. White nose syndrome in bats and Dutch elm disease are two high-profile examples of extremely deadly fungal diseases gaining wider ranges through global trade. While each fungus itself is unique, many fungal pathogens share several special abilities that make them especially lethal.

Unlike viruses and most bacteria, fungi can survive—and survive for years—in dry or frigid environments outside of hosts. All they need to do is make spores: small, hardy reproductive structures containing all the necessary DNA to grow a new fungus. As spores, fungi can tough out adverse conditions and drift thousands of miles in the wind to find more livable settings. Aspergillus sydowii, for example, hitches a ride in dust storms from Africa to the Caribbean, where it infects coral reefs. They’re also ubiquitous in the air; there are one to ten spores in every breath you take. Wheat stem rust, a common fungus that causes $60 billion of crop damage a year, produces up to 1011 spores per hectare, and they can travel 10,000 kilometers through the atmosphere to find new hosts. That’s only taking into account one of its five spore forms, which are produced at different times in its life cycle. For plants in general, fungi are the number one infectious threat, far above bacteria or viruses.

Many fungi are also generalists that use a scorched-earth strategy to parasitize a wide range of hosts. To invade host cells, viruses need to sneak their way in by fitting into specific proteins like a key in a lock. Because viruses need to have this precision, it’s hard for them to jump from one species to another one with a different set of proteins, and it’s a big deal when it does happen. Fungi, on the hand, don’t need to enter cells; like the mold that eats your bread, it squirts its digestives juices and rots everything in sight. While viruses nimbly pick your locks, fungi are like a bomb that will blow up your door—or anyone else’s.

Read More

NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

The Crux

A collection of bright and big ideas about timely and important science from a community of experts.
ADVERTISEMENT

See More

ADVERTISEMENT
Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »