Tag: Mars

Salts on Mars Are a Mixed Blessing

By David Warmflash | June 20, 2016 7:00 am
mars-lineae

Perchlorates are abundant on Mars, and they allow liquid water to flow. (Credit: NASA/JPL-Caltech/University of Arizona)

It’s a major component of solid rocket propellants. It allows water to exist as liquid on Mars, despite atmospheric pressure at the Martian surface being roughly 0.6 percent that on Earth. It also can be broken down to release oxygen that astronauts and future colonists in a Mars settlement could breathe.

It’s called perchlorate and it’s abundant on Mars –10,000 times more abundant in Martian dirt than in soils and sands of Earth. That may sound like a good thing, considering the useful properties of perchlorate, but there’s also a flip side.

Being a negative ion, perchlorate (ClO4) forms various salts, but it has detrimental health effects. Potassium perchlorate is used as a drug to treat certain forms of hyperthyroidism (overactive thyroid). But exposure to environmental perchlorate causes the opposite of hyperthyroidism, namely hypothyroidism — an underactive thyroid.

It would be devastating for Martian colonists.

An Ubiquitous Chemical Solves Two Mysteries

Perchlorate is all over the Martian surface. In 2009, NASA’s Phoenix lander identified perchlorate in the Martian dirt pretty much everywhere it looked. Then, last September, NASA’s Mars Reconnaissance Orbiter demonstrated very high concentrations of perchlorate salts within recurring slope lineae (RSL), features on the planet’s surface that were formed from relatively recent water flows. The finding solved a mystery of how Martian water could be liquid long enough to change the landscape.

pia19917_perspective_6

Recurring slope lineae are seen as dark streaks as salty water oozes from the walls of Garni Crater on Mars. (Credit: NASA/JPL-Caltech/University of Arizona)

Because of the thin atmosphere, pure water on the Red Planet can persist only as ice or vapor, depending on the temperature. But dissolved salts change the physical chemistry, enough that subsurface liquid water can emerge from time to time and stick around as lakes and streams.

Following the perchlorate could lead us to underground water, which in turn could lead to native microorganisms, a long-sought milestone in space biology. But it would also factor into the choice for landing sites for human missions and colonies, plus it would facilitate terraformation – changing the planet to be more like Earth.

A Source of Energy and Oxygen

The oxygen and energy contained in perchlorate make it a potential energy source on Mars, both for generating electricity and for rocket propulsion. Ammonium perchlorate was the main propellant in solid rocket boosters of the space shuttles that NASA flew from 1981-2011. Mars colonization, and even early human landings, will depend on utilization of Mars resources to fuel craft that will ferry people between the surface and orbit, where they will link with larger ships that make the interplanetary voyage.

Having four oxygen atoms per molecule also makes perchlorate useful to life-support systems. Colonists could employ certain microorganisms from Earth that break up the molecule to release O2. The extracted O2 could be pumped through life support systems of enclosed underground habitats.

Later, the process could be scaled up to enrich air that’s pumped into sealed caverns and craters to help achieve paraterraforming — creating Earth-like environments within limited enclosed areas rather than encompassing the entire planet.

Not a Solution for Liquid Water

Although high concentrations of perchlorate will maintain water in a liquid state, it would be toxic to drink and wouldn’t support microbial life. On Earth, salt-loving microorganisms thrive in the Dead Sea. However, Dead Sea salts are not perchlorate salts, and Mars’ surface water is far more briny than the Dead Sea — even more briny than Antarctica’s Don Juan Pond, where salinity is 44 percent.

donjuanpond_ali_2014003

The saltiest pond on Earth. (Credit: NASA Earth Observatory image by Jesse Allen)

Along with hypothyroid conditions, perchlorate has also been implicated in aplastic anemia and agranulocytosis, conditions characterized by a life-threatening deficiency of blood cells. Perchlorate is particularly dangerous for infants dependent on lactating mothers; that’s enough of a concern on Earth, but especially alarming on a new world that interplanetary colonists might populate.

This means that we’ll have to take extreme precaution to remove perchlorate from Mars water and dirt, or from any crops that we grow in it. Dust will have to be kept from contaminating air circulating through life support systems. Future explores and colonists will have to do all of this, not only as they capture the perchlorate in order to reap its benefits, but also as they confront space radiation, physical deconditioning from low gravity, and other potential Martian threats to human health.

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: Mars, space exploration

These Experiments Are Building the Case to Terraform Mars

By Nathaniel Scharping | June 14, 2016 10:43 am
MarsTransitionV

An artist’s conception of what Mars could look like as it gradually becomes more habitable. (Credit: Daein Ballard/Wikimedia Commons)

Whether it’s extreme climate change, an impending asteroid impact, scientific curiosity or even space tourism, there are compelling reasons to think about calling Mars our second home. But before expanding humanity’s cosmic real estate holdings, scientists will need to make the Red Planet feel a little more like our blue marble.

That, in a nutshell, is the goal of researchers thinking about ways to terraform another planet.

Elon Musk, of Tesla and SpaceX fame, has suggested we nuke the polar ice caps on Mars to unlock liquid water and release clouds of CO2 that would thicken the atmosphere and warm the planet. This notion got some press last year when Major League Baseball player and amateur astrophysicist Jose Canseco tweeted: “By my calculations if we nuked the polar ice caps on Mars we would make an ocean of 36 feet deep across the whole planet,” thereby enshrining the idea in our popular imagination. Giant mirrors concentrating sunlight on the poles and smashing an entire moon into Mars also top the list of grandiose proposals to Earth-ify the Red Planet. Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: Mars, space exploration

What Do the Stars Look Like from Mars?

By Eric Betz | June 10, 2016 1:32 pm
mars-stars

An artist’s concept of a meteor shower, as seen on Mars. (Credit: NASA/JPL-Caltech)

The Mars-like deserts of the American Southwest are some of Earth’s most iconic stargazing grounds. Far from pestering city lights and free from regular cloud cover, they provide a starry-skied sanctuary for lovers of the night.

So, it would stand to reason that the deserts of Mars itself would be even more idyllic. After all, there’s no light pollution and cloud cover is hard to come by.

And to some degree, that’s true. It doesn’t get much darker than nighttime on the Red Planet. And Mars’ atmosphere is so weak — just one percent of Earth’s — that the stars don’t twinkle. Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: Mars, stargazing

If There’s Life on Mars, How Should We Treat It?

By Kelly Smith, Clemson University | May 12, 2016 11:19 am
mt-sharp

NASA’s Curiosity rover captured this image of the Kimberley formation on Mars. (Credit: NASA/JPL-Caltech)

NASA’s chief scientist recently announced that “…we’re going to have strong indications of life beyond Earth within a decade, and I think we’re going to have definitive evidence within 20 to 30 years.” Such a discovery would clearly rank as one of the most important in human history and immediately open up a series of complex social and moral questions. One of the most profound concerns is about the moral status of extraterrestrial life forms. Since humanities scholars are only just now beginning to think critically about these kinds of post-contact questions, naïve positions are common.

Take Martian life: we don’t know if there is life on Mars, but if it exists, it’s almost certainly microbial and clinging to a precarious existence in subsurface aquifers. It may or may not represent an independent origin – life could have emerged first on Mars and been exported to Earth. But whatever its exact status, the prospect of life on Mars has tempted some scientists to venture out onto moral limbs. Of particular interest is a position I label “Mariomania.”

Should We Quarantine Mars?

Mariomania can be traced back to Carl Sagan, who famously proclaimed

If there is life on Mars, I believe we should do nothing with Mars. Mars then belongs to the Martians, even if the Martians are only microbes.

Chris McKay, one of NASA’s foremost Mars experts, goes even further to argue that we have an obligation to actively assist Martian life, so that it does not only survives, but flourishes:

…Martian life has rights. It has the right to continue its existence even if its extinction would benefit the biota of Earth. Furthermore, its rights confer upon us the obligation to assist it in obtaining global diversity and stability.

To many people, this position seems noble because it calls for human sacrifice in the service of a moral ideal. But in reality, the Mariomaniac position is far too sweeping to be defensible on either practical or moral grounds.

Streaks down Martian mountains are evidence of liquid water running downhill – and hint at the possibility of life on the planet. (Credit: NASA/JPL/University of Arizona)

A Moral Hierarchy: Earthlings before Martians?

Suppose in the future we find that:

  1. There is (only) microbial life on Mars.
  2. We have long studied this life, answering our most pressing scientific questions.
  3. It has become feasible to intervene on Mars in some way (for instance, by terraforming or strip mining) that would significantly harm or even destroy the microbes, but would also be of major benefit to humanity.

Mariomaniacs would no doubt rally in opposition to any such intervention under their “Mars for the Martians” banners. From a purely practical point of view, this probably means that we should not explore Mars at all, since it is not possible to do so without a real risk of contamination.

Beyond practicality, a theoretical argument can be made that opposition to intervention might itself be immoral:

  • Humans beings have an especially high (if not necessarily unique) moral value and thus we have an unambiguous obligation to serve human interests.
  • It is unclear if Martian microbes have moral value at all (at least independent of their usefulness to people). Even if they do, it’s certainly much less than that of human beings.
  • Interventions on Mars could be of enormous benefit to humankind (for instance, creating a “second Earth”).
  • Therefore: we should of course seek compromise where possible, but to the extent that we are forced to choose whose interests to maximize, we are morally obliged to err on the side of humans.

Obviously, there are a great many subtleties I don’t consider here. For example, many ethicists question whether human beings always have higher moral value than other life forms. Animal rights activists argue that we should accord real moral value to other animals because, like human beings, they possess morally relevant characteristics (for instance, the ability to feel pleasure and pain). But very few thoughtful commentators would conclude that, if we are forced to choose between saving an animal and saving a human, we should flip a coin.

Simplistic claims of moral equality are another example of overgeneralizing a moral principle for rhetorical effect. Whatever one thinks about animal rights, the idea that the moral status of humans should trump that of microbes is about as close to a slam dunk as it gets in moral theory.

On the other hand, we need to be careful since my argument merely establishes that there can be excellent moral reasons for overriding the “interests” of Martian microbes in some circumstances. There will always be those who want to use this kind of reasoning to justify all manner of human-serving but immoral actions. The argument I outline does not establish that anyone should be allowed to do anything they want to Mars for any reason. At the very least, Martian microbes would be of immense value to human beings: for example, as an object of scientific study. Thus, we should enforce a strong precautionary principle in our initial dealings with Mars (as a recent debate over planetary protection policies illustrates).

For Every Complex Question, There’s a Simple, Incorrect Answer

Mariomania seems to be the latest example of the idea, common among undergraduates in their first ethics class, that morality is all about establishing highly general rules that admit no exception. But such naïve versions of moral ideals don’t long survive contact with the real world.

By way of example, take the “Prime Directive” from TV’s “Star Trek”:

…no Star Fleet personnel may interfere with the normal and healthy development of alien life and culture…Star Fleet personnel may not violate this Prime Directive, even to save their lives and/or their ship…This directive takes precedence over any and all other considerations, and carries with it the highest moral obligation.

Hollywood’s version of moral obligation can be a starting point for our real-world ethical discussion.

As every good trekkie knows, Federation crew members talk about the importance of obeying the prime directive almost as often as they violate it. Here, art reflects reality, since it’s simply not possible to make a one-size-fits-all rule that identifies the right course of action in every morally complex situation. As a result, Federation crews are constantly forced to choose between unpalatable options. On the one hand, they can obey the directive even when it leads to clearly immoral consequences, as when the Enterprise refuses to cure a plague devastating a planet. On the other hand, they can generate ad hoc reasons to ignore the rule, as when Captain Kirk decides that destroying a supercomputer running an alien society doesn’t violate the spirit of the directive.

Of course, we shouldn’t take Hollywood as a perfect guide to policy. The Prime Directive is merely a familiar example of the universal tension between highly general moral ideals and real-world applications. We will increasingly see the kinds of problems such tension creates in real life as technology opens up vistas beyond Earth for exploration and exploitation. If we insist on declaring unrealistic moral ideals in our guiding documents, we should not be surprised when decision makers are forced to find ways around them. For example, the U.S. Congress’ recent move to allow asteroid mining can be seen as flying in the face of the “collective good of mankind” ideals expressed in the Outer Space Treaty signed by all space-faring nations.

The solution is to do the hard work of formulating the right principles, at the right level of generality, before circumstances render moral debate irrelevant. This requires grappling with the complex trade-offs and hard choices in an intellectually honest fashion, while refusing the temptation to put forward soothing but impractical moral platitudes. We must therefore foster thoughtful exchanges among people with very different conceptions of the moral good in order to find common ground. It’s time for that conversation to begin in earnest.

The Conversation

This article was originally published on The Conversation. Read the original article.

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: Mars

How GMOs Will Let Astronauts Live on Mars

By Sarah Scoles | December 18, 2015 11:57 am
astrobiology

(Credit: NASA)

Don’t panic, future astronauts, but GMOs will probably accompany you on your adventures to deep space.

Scientists hope to genetically engineer organisms to survive off-Earth and to do some of the dirty work on spaceships and other planets. The field of study is called “space synthetic biology.” And this new frontier in genetic research could be key to opening up the final frontier.

Biology as Technology

Synthetic biology refers, generally speaking, to the work of giving some organism altered or even novel characteristics by changing its genes. Space synthetic biologists genetically alter organisms to make them more space-worthy — resistant to radiation or heat, for instance — and to make them useful to space missions — like turning Martian dirt into concrete. It sounds “out-there,” but microbes already make our planet habitable and pleasant.

“We’re breathing oxygen that was biologically produced,” says Lynn Rothschild, the head of the synthetic biology program at NASA’s Ames Research Center. “I’m wearing cotton that was biologically produced.”

We’re not going to take sheep on space missions, she clarifies, but we could take the capabilities of oxygen- and cotton-making plants and put them into the DNA of more portable life, like yeast. “Start looking at biology as technology,” she says, a “genetic hardware story” that could infuse all aspects of space missions.

astrobiology_2

A petri dish with specimens lit by LED lights at an Ames Research Center laboratory. (Credit: NASA)

Rothschild advises the Stanford-Brown team in the International Genetically Engineered Machine competition, where her groups have, among other things, made wires using DNA as a template; created a biodegradable drone; and taken genes from extreme bacteria and inserted them into E. coli to create hybrid organisms that resist extreme pH, temperature, and dryness. They called it the Hell Cell.

Such bio-based technology, according to a November report from a team led by Amor Menezes California Institute for Quantitative Biosciences in Berkeley, requires 26-85 percent less mass than “abiotic” (non-living) systems. For instance, a spaceship could carry a habitat to Mars, like the Apollo missions did to the moon, but no one wants to live in a tin can, and also that tin can is heavy.

“Think in analogy with early long-term travel on Earth,” says Rothschild, like pilgrims to North America. “They didn’t bring houses. They learned to live off the land.”

Jobs for Microbes…in Space

Future astronauts will have to live off of inhospitable land and also spaceships, which have no land. Menezes’s report sets forth a plan for those astronauts, suggesting directions the research could go. The microbes we use for terrestrial composting and waste treatment, for instance, produce nitrous oxide, which is spaceship go-juice. We could genetically engineer those microbes to do their duties in space, with different oxygen requirements and faster reaction capabilities but the same basic chemistry. Just by pooping and making trash, then, astronauts could create the raw material for fuel.

Once those refuse-creating colonists arrive on Mars, they could use carried-on microbes to mine the materials for building their new homes. Microbes that make acid could dissolve the Martian rock that surrounds metals, leaving just “the resource.” Or we could engineer microbes to dissolve the resource itself, so that it flows out and can then be reconstituted into a colonial outpost.

Construction companies on Mars could take the “regolith,” or surface material, and bind it together using natural glue, like mussel foot protein (engineered for optimal performance on Mars). Scientists could also make microbes that chew on the regolith and spit out calcium or iron to make “biocement.”

Leftovers!

Poop processing, manufacturing, and construction all leave behind useful byproducts, like methane, which could help keep the colony’s lights on. The outpost, while electrified, wouldn’t have many frills. But scientists do have to ensure astronauts’ basics: air, water, and food, indefinitely.

F1.large

The six major challenges for space synthetic biology. (Credit: Hugo Teixeira via Royal Society Interface)

Menezes recommends that we develop space-friendly microbes that can turn byproducts of wastewater treatment into food (yum!). While the food doesn’t have to be Michelin-star-quality, it does have to qualify as “nutrient-dense biomass that supplements astronaut dry-food while being versatile in flavor and texture.”

If the walls of a ship or colony were alive (it’s not creepy), the microbes could up-cycle carbon dioxide into oxygen and would — bonus! — shield astronauts from radiation. Not only does radiation zap our DNA with cancerous mutations, it also makes medicines expire faster.

Engineering the Medicine Cabinet

People will still get sick in space, so synthetic biologists are also working on bio-based medical care. Microorganisms and plants could be engineered to make medicines and to shift the microbiome — the community that lives in symbiosis with each of us — back into order.

“If astronauts could grow their medicine in algae I think that would be super cool,” says Josiah Zayner, a space synthetic biologist at NASA’s Ames Research Center, who was not an author on the paper, “but I think it would take a lot of money and resources to make this happen.”

But what if the ship or colony were even more alive, Menezes wonders, full of biosensors and biological control systems? If it sounds a little too Battlestar Galactica-Cylon for comfort, don’t worry yet, says Zayner. “Honestly, I think this is just their ‘out there’ idea,” he says. “Systems that they are describing have not really been invented yet. They lost me at ‘hybrid robot version of tumor killing bacteria.’”

Me too.

But it’s not that out there, contends Menezes.

“The space cybernetics grand challenge essentially calls for implementing control systems ideas into biological systems,” he says — the same control systems that put people on the moon and let Curiosity rove on Mars. But with biology. Integrating the two with technology will “take some time,” he continues, but “complete and tested space synthetic biology systems should be ready within a couple of decades, and if not in time for the first U.S. human Mars expedition, certainly by the second or third one.”

75997main_marshabitat

An artist’s rendering of Martian living quarters covered with soil to shield the crew from the sun’s radiation. (Credit: NASA)

But even a cybernetic ship or colony with living walls, algae gardens, and nutrient-dense biomass isn’t quite enough for a self-sustaining, long-lived Martian habitat. To create that, we either need to make Mars a planet like Earth — or we need to make a miniature Earth on Mars.

To “terraform” a planet is to Earthify it. But “paraterraforming” is the more realistic step down: turning a smaller, contained space into a self-sustaining, human-friendly place. In the case of Mars, this would be a habitable spot surrounded by god-awful instant-death desert. Scientists would have to engineer an entire ecosystem that creates what astronauts need to eat, drink, breathe, and stay healthy, sane, and productive. All while recycling their waste products and keeping their environment cut off from the aforementioned god-awful instant-death desert — using microbes.

“This, I think should be the number-one research goal before missions to Mars,” says Zayner.

Reality Check

And the missions to Mars are what Menezes’ report looks toward.

“All of this is coming from the viewpoint of making it to Mars in the next 20 years and not from the viewpoint of what synthetic biology will be doing in 20 years,” says Zayner, “because that is extremely hard to plan for.” And it depends on the available of both cash and people to do the job.

Zayner also cautions that any life-based space systems will need to be tested and built years before they appear on a crewed capsule or a colony on the Red Planet. As a result, the bleeding-edge technology that exists when a Mars mission launches probably won’t be part of that Mars trip — well-characterized, older technology likely will be. That’s true in any space mission, which engineers blueprint and begin building many years before launch.

But Menezes says the gap between prototype and practical use is shrinking, largely because the space industry is no longer run entirely by a government.

“Just yesterday, I learned that there was a recent project that went from concept idea to actual space deployment within six months,” he says. “Although this timeline is atypical at the moment, with the advent of commercial space ventures, it is now possible to partner to quickly test and characterize fruitful ideas in space.”

But after the ship launches with its promising technology, problems could arise on Mars, too. The regolith that we might use for construction contains perchlorates, salts that can be toxic to humans. Toxic bricks do not an ideal colony build.

“Perchlorates are certainly a problem at the moment,” says Menezes. But we could figure out how to deal with those, and, in our initial attempts at exploiting Mars’s resources, use Mars’s air instead of its land. “For instance, 95 percent of the Mars atmosphere is carbon dioxide. This carbon dioxide will be the primary carbon source for the microbes.”

While making our own special-snowflake space biology sounds sci-fi, non-fictional scientists are working to make the concepts nonfictional, too. To engineer organisms that will be useful on other planets, they first look to our own world and its biology. And in altering and organizing those biological beasts into useful space systems, scientists will also learn how to make life better back on Earth.

“The possibilities of space synthetic biology are truly endless, yet each of them has immense importance back on Earth,” says Menezes.

Synthetic biological solutions to space problems in medicine, food, and carbon dioxide can address similar issues on Earth: personalized medicine, agriculture for growing populations, and fixing our carbon-dioxide-laden atmosphere. And while paraterraformed spaces give astronauts a safe place to sleep, the technologies can also help us learn to live sustainably on Earth. A Martian colony would be the ultimate zero-waste green space, whose ethos every earthling should get behind.

“I find the notion of doing ‘far-out space stuff’ that is simultaneously a priority on Earth really captivating and compelling,” says Menezes.

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: Mars, space exploration

Beyond Mars: The Distant Future of Space Exploration

By David Warmflash | December 3, 2015 12:19 pm
101883main_C91_08781_1200x900

An artist’s rendering of a multifunction Mars base. (Credit: NASA/Glenn Research Center)

Louis Friedman has always balanced his optimistic vision for the future of human space exploration with a dose of reality, and his tempered outlook courses through his new book, Human Spaceflight From Mars to the Stars, in which he charts the distant future of human space travel.

Friedman is optimistic that human space exploration will continue well into the future. However, here’s that dose of reality from Friedman: humans will never venture beyond Mars, at least not in any historically significant way. Once humans tame Mars, how will humanity continue to explore cosmic frontiers, and to what end? Space travel, according to Friedman, will be an act more focused on transporting our minds — with the help of new technologies — rather than our bodies. Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: Mars, space exploration

Mars One Finalist: “I Could Sow the Seeds of a New Civilization”

By Hannah Earnshaw, Durham University | February 20, 2015 2:41 pm
Hannah Earnshaw - student, scientist, adventurer. Photo by Monica Alcazar-Duarte

Hannah Earnshaw – student, scientist, adventurer. Photo by Monica Alcazar-Duarte

I have always been in awe of the night sky, trying to comprehend the vastness of space and the countless wonders it contains. But I have always felt a certain dissatisfaction with only being able to see it at a distance.

One day I imagine that humanity will be able to visit other planets in the solar system, and venture even further to other stars, but this has always seemed very far away. That’s the reason why I applied for the Mars One mission, aimed at starting a human colony on Mars – it seemed like a real opportunity to get closer to the rest of the night sky, to give me a chance to be a part of taking humanity into the stars.

Mars is, in a way, the perfect stepping stone into the rest of the universe. Despite its inhospitable conditions, it has a day-night cycle only 39 minutes longer than on Earth. Unlike the moon, it is resource-rich, and has a soil and atmosphere rich in water and nitrogen respectively. Mars does not suffer from the sweltering heat and toxic atmosphere found on Venus, closer to the sun from Earth, but still receives enough light from the sun to enable the generation of solar power.

Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: Mars, space exploration

If Mars Once Hosted Life, How Would We Know?

By Sarah Scoles | November 5, 2014 9:00 am

mars

Despite a few press-stopping false alarms and a long-standing sci-fi fascination, there’s no evidence of biology — microscopic, trilobitish, or creepily humanoid — on Mars.

But that hasn’t stopped the Curiosity rover from running around saying “This spot would have been habitable” and “That spot definitely has water.” And it hasn’t stopped astronomer Nathalie Cabrol from searching for the ever-elusive “biosignatures”: evidence, like geological graffiti, that proclaims “LIFE WUZ HERE.”

But it isn’t as easy as finding a spray-painted tag. First of all, the life almost certainly isn’t alive anymore. And second of all, it probably hasn’t been alive for a long time. Around 3.5 billion years ago, Mars changed from being a relatively nice place into the frozen radiation-zapped desert it is today. It was never San Juan, but it does seem to have had a milder climate, water oceans, and a thick, protective atmosphere. If this young sub-Caribbean Mars was home to life, that life may have left its mark. The problem is that we aren’t totally sure what that mark might look like.

Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: Mars

Forget Mars. Here’s Where We Should Build Our First Off-World Colonies

By David Warmflash | September 8, 2014 11:05 am

off-world colony on mars

The collective space vision of all the world’s countries at the moment seems to be Mars, Mars, Mars. The U.S. has two operational rovers on the planet; a NASA probe called MAVEN and an Indian Mars orbiter will both arrive in Mars orbit later this month; and European, Chinese and additional NASA missions are in the works. Meanwhile Mars One is in the process of selecting candidates for the first-ever Martian colony, and NASA’s heavy launch vehicle is being developed specifically to launch human missions into deep space, with Mars as one of the prime potential destinations.

But is the Red Planet really the best target for a human colony, or should we look somewhere else? Should we pick a world closer to Earth, namely the moon? Or a world with a surface gravity close to Earth’s, namely Venus?

To explore this issue, let’s be clear about why we’d want an off-world colony in the first place. It’s not because it would be cool to have people on multiple worlds (although it would). It’s not because Earth is becoming overpopulated with humans (although it is). It’s because off-world colonies would improve the chances of human civilization surviving in the event of a planetary disaster on Earth. Examining things from this perspective, let’s consider what an off-world colony would need, and see how those requirements mesh with different locations.

Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: Mars, space exploration

Pilot Dreams of Stamping His One-Way Ticket to Mars

By Carl Engelking | March 6, 2014 9:00 am
Nick Noreus

Nick Noreus prepares to fly an Mi-17 in Ukraine while he was embedded with the Afghan Army for a year.

There’s something rejuvenating about escaping civilization for the quiet isolation of unadulterated wilderness. But could you leave it all behind — forever? That’s the fate that awaits the men and women still in contention for a one-way ticket to the Red Planet.

Pilot, mechanic and inventor Nick Noreus, 33, from Florida, survived the first round of cuts, and he is on the shortlist for the Mars One mission. Read More

CATEGORIZED UNDER: Space & Physics, Top Posts
MORE ABOUT: Mars, space exploration
NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

The Crux

A collection of bright and big ideas about timely and important science from a community of experts.
ADVERTISEMENT

See More

ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Collapse bottom bar
+