Tag: materials science

Beyond Graphene, a Zoo of New 2-D Materials Are Being Created

By Andy Berger | July 17, 2015 10:00 am
Two alternately stacked layers of hexagonal boron nitride.

Two alternately stacked layers of hexagonal boron nitride.

Nine years ago, Joshua Robinson was approached by his then-advisor with news of a discovery that would end up transforming his career, and much of materials science. “I saw this crazy talk about 2-D graphite,” he recalls his adviser saying.

The adviser was referring of course to graphene, the first material to exist as truly two-dimensional: only a single atom thick. Back in 2006, the physics community was just beginning to wrap its mind around how a 2-D material could even exist.

Fast forward to 2015. The realization that materials can be thinned down to the absolute limit of a single atom is spreading, both throughout the world and across the periodic table. Researchers are learning that 2-D isn’t just for the carbon atoms of graphene. Different elemental combinations can lead to fascinating new science and applications.

Robinson is now associate director for Pennsylvania State University’s Center for Two-Dimensional and Layered Materials, a center with 20 faculty and over 50 students dedicated to uncovering the fundamental properties of this new zoo of 2-D materials. It is one of many such centers around the world. And as scientists continue to create new 2-D materials there’s a palpable frenzy to characterize their surprising electronic, optical, and mechanical properties.

The excitement stems from the fact that materials shaved down to only a few atoms act very differently from their so-called “bulk” or 3-D version. Quantum effects begin to take hold as the electrons in the material are squeezed into that impossibly thin layer.

And, being flexible, 2-D materials could bring those unique electrical properties to all sorts of new applications – from bendable touch screens to wearable sensors.

Read More

CATEGORIZED UNDER: Technology, Top Posts
MORE ABOUT: materials science

The Skyscrapers of the Future Will Be Made of Wood

By Peter Wilson, Edinburgh Napier University | May 22, 2015 10:02 am
The proposed 34-story wood tower in Stockholm. © Berg | C.F. Møller Architects

The proposed 34-story wood tower in Stockholm. © Berg | C.F. Møller Architects

Vancouver-based architect Michael Green was unequivocal at a conference at which I heard him speak a while ago: “We grow trees in British Columbia that are 35 stories tall, so why do our building codes restrict timber buildings to only five stories?”

True, regulations in that part of Canada have changed relatively recently to permit an additional story, but the point still stands. This can hardly be said to keep pace with the new manufacturing technologies and developments in engineered wood products that are causing architects and engineers to think very differently about the opportunities wood offers in the structure and construction of tall buildings.

Green himself produced a book in 2012 called Tall Wood, which explored in detail the design of 20-story commercial buildings using engineered timber products throughout. Since then he has completed the Wood Innovation and Design Center at the University of North British Columbia which, at 29.25 meters (effectively eight stories), is currently lauded as the tallest modern timber building in North America.

Read More

CATEGORIZED UNDER: Technology, Top Posts

Cutting-Edge Technology You Can Spot at the Sochi Olympics

By Andrew Steinbeiser | February 13, 2014 11:23 am

The Sochi Olympics are churning out dramatic victories – but athletes aren’t the only ones who fine-tuned their craft to get here. As U.S. bobsledders, skaters and lugers compete during these Games, they’re doing so with cutting-edge technology that’s gone through an equally exhaustive testing process.

These technological upgrades, which look to bolster their respective sports with faster times and improved features, will help athletes stand their best chance yet at scoring the gold this year. Here we take a look at three notable improvements.

 

Courtesy Under Armour

Courtesy Under Armour

Slicker Skating Suits

With speed skating, the difference between scoring a gold medal and walking home empty-handed is determined by a fraction of a second. To help put U.S. Olympic speed skaters on the winning side of that difference, sporting goods manufacturer

Under Armour and defense contractor Lockheed Martin created the Mach 39 speed skating suit to shave off those precious nanoseconds.

Whereas most suits try to be as slick and aerodynamic as possible, Under Armour went the opposite direction by installing “flow-molding” on the backside of the Mach 39 suits. These strategically placed dimples work like the bumps on a golf ball, cutting back drag that accumulates behind high-velocity objects. “We’re trying to disrupt that air flow before it bulks up behind a skater,” Chief of Innovation Kevin Haley said.

Along with reduced air drag, the suits also cut down on friction generated between the athlete’s thighs as they cross over one another for tight track turns. Dubbed “Armour Glide,” these textiles are strategically located on the athlete’s inner thighs, where t

he most friction—and energy waste—occurs. With the textiles, athletes see a 65% drop in the coefficient of friction between the legs, letting them redirect their strength onto the ice and “put more power into the skates,” Haley said.

Read More

CATEGORIZED UNDER: Technology, Top Posts
MORE ABOUT: materials science

Peak Plastic: One Generation’s Trash Is Another Generation’s Treasure

By Guest Blogger | July 2, 2012 10:23 am

Debbie Chachra is an Associate Professor of Materials Science at the Franklin W. Olin College of Engineering, with research interests in biological materials, education, and design. You can follow her on Twitter: @debcha.

In 1956, M. King Hubbert laid out a prediction for how oil production in a nation increases, peaks, and then quickly falls down. Since then many analysts have extended this logic and said that global oil production will soon max out—a point called “peak oil“—which could throw the world economy into turmoil.

I’m a materials scientist by training, and one aspect of peak oil I’ve been thinking about recently is peak plastic.

The use of oil for fuel is dominant, and there’s a reason for that. Oil is remarkable—not only does it have an insanely high energy density (energy stored per unit mass), but it also allows for a high energy flux. In about 90 seconds, I can fill the tank of my car—and that’s enough energy to move it at highway speeds for five hours—but my phone, which uses a tiny fraction of the energy, needs to be charged overnight. So we’ll need to replace what oil can do alone in two different ways: new sources of renewable energy, and also better batteries to store it in. And there’s no Moore’s law for batteries. Getting something that’s even close to the energy density and flux of oil will require new materials chemistry, and researchers are working hard to create better batteries. Still, this combination of energy density and flux is valuable enough that we’ll likely still extract every drop of oil that we can, to use as fuel.

But if we’re running out of oil, that also means that we’re running out of plastic. Compared to fuel and agriculture, plastic is small potatoes. Even though plastics are made on a massive industrial scale, they still only account for about 2% world’s oil consumption. So recycling plastic saves plastic and reduces its impact on the environment, but it certainly isn’t going to save us from the end of oil. Peak oil means peak plastic. And that means that much of the physical world around us will have to change.

Read More

CATEGORIZED UNDER: Technology, Top Posts
NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

The Crux

A collection of bright and big ideas about timely and important science from a community of experts.
ADVERTISEMENT

See More

ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »