Tag: sex

Five Sex Research Pioneers You’ve Probably Never Heard Of

By Guest Blogger | October 23, 2013 12:54 pm

By Jesse Bering

Richard von Krafft-Ebing and his wife Marie-Louise.

Richard von Krafft-Ebing and his wife Marie-Louise.

The new Showtime series Masters of Sex is shining light on two remarkable figures in the history of sexology, William Masters and Virginia Johnson. Although most of us may not be aware of their colorful back-story, we have, at least, heard of “Masters and Johnson” before. Along with the famous Alfred Kinsey, they were iconic American figures in 20th-century sex research, widely known for shirking the conservative conventions that kept our forebears in the closet of erotic ignorance.

The history of sexology runs far deeper than a few charismatic figures, however. Their names may not be as familiar to us, but there were many other fascinating early sex researchers who left their own interesting legacies, and not always entirely positive ones at that. Some of these forgotten scholars were, like Masters and Johnson, angels of sexual healing; yet others were, quite frankly, bastards of bigotry.

So without further ado, allow me to introduce you to five early sexologists that you’ve (probably) never heard of… at least, not like this.

Read More

CATEGORIZED UNDER: Health & Medicine, Top Posts
MORE ABOUT: sex

The Internet Pulses With the Rhythms of Human Life

By Neuroskeptic | September 11, 2012 9:30 am

Neuroskeptic is a neuroscientist who takes a skeptical look at his own field and beyond at the Neuroskeptic blog

Life is dominated by the Earth’s cycles. Day and night, spring and autumn, change the environment in so many ways that almost all organisms regulate their activity to keep up with time and the seasons. Animals sleep, and many hibernate, moult, and breed only at certain times of the year. Plants time the growth of seeds, leaves, fruit and shoots to make the most of the weather.

But what about humans? We sleep, and women menstruate, but do other biological cycles affect our behavior? The Internet has offered researchers a unique resource for answering this question.

For example, according to research published recently in the Archives of Sexual Behavior from American researchers Patrick and Charlotte Markey, Americans are most likely to search for sex online during the early summer and the winter.

The authors looked at the Google Trends for a selection of naughty words and phrases, and this revealed a pretty marked 6 month cycle for searches originating from the USA, with two yearly peaks in the search volumes. The words were related to three categories: pornography, sex services (e.g. massage parlors), and dating websites.

Google Trends searches for 'pornography' related words over time
Google Trends searches for pornography-related words over time

This image shows the graph for pornography searches—the grey line—with an idealized six-month cycle also shown for comparison, the black line. The data show a strong twice-yearly peak. The picture was similar for two other categories of sexual words: prostitution and dating websites.

Read More

Older Dads Give Good Telomeres, But Longevity? Not So Much

By Sophie Bushwick | August 2, 2012 11:23 am

Sophie Bushwick (Twitter, Tumblr) is a science journalist and podcaster, and is currently an intern at DISCOVERmagazine.com. She has written for Scientific American, io9, and DISCOVER, and has produced podcasts for 60-Second Science and Physics Central

Human chromosomes (grey) capped by telomeres (white)
U.S. Department of Energy Human Genome Program

Renowned biologist Elizabeth Blackburn has said that when she was a young post-doc, “Telomeres just grabbed me and kept leading me on.” And lead her on they did—all the way to the Nobel Prize in Medicine in 2009. Telomeres are DNA sequences that continue to fascinate researchers and the public, partially because people with longer telomeres tend to live longer. So the recent finding that older men father offspring with unusually lengthy telomeres sounds like great news. Men of advanced age will give their children the gift of longer lives—right? But as is so often the case in biology, things aren’t that simple, and having an old father may not be an easy route to a long and healthy life.

Every time a piece of DNA gets copied, it can end up with errors in its sequence, or mutations. One of the most frequent changes is losing scraps of information from each end of the strand. Luckily, these strands are capped with telomeres, repeating sequences that do not code for any proteins and serve only to protect the rest of the DNA. Each time the DNA makes a copy, its telomeres get shorter, until these protective ends wear away to nothing. Without telomeres, the DNA cannot make any more copies, and the cell containing it will die.

But sperm are not subject to this telomere-shortening effect. In fact, the telomeres in sperm-producing stem cells not only resist degrading, they actually grow. This may be thanks to a high concentration of the telomere-repairing enzyme telomerase in the testicles; researchers are still uncertain. All they know is that the older the man, the longer the telomeres in his sperm will be.

Read More

How the Alien Genome Within Us Affects When We Die and Why We Have 2 Sexes

By Ed Yong | October 17, 2011 1:37 pm

This post was originally published at Ed Yong’s Discover blog, Not Exactly Rocket Science.

Two people are dancing a waltz, and it is not going well. One is tall and the other short; one is graceful, the other flat-footed; and both are stepping to completely different rhythms. The result is chaos, and the dance falls apart. Their situation mirrors a problem faced by all complex life on Earth. Whether we’re animal or plant, fungus or alga, we all need two very different partners to dance in step with one another. A mismatch can be disastrous.

Virtually all organisms with complex cells—better known as eukaryotes—have at least two separate genomes. The main one sits in the central nucleus. There’s also a smaller one in tiny bean-shaped structures called mitochondria, little batteries that provide the cell with energy. Both sets of genes must work together. Neither functions properly without the other.

Mitochondria came from a free-living bacterium that was engulfed by a larger cell a few billion years ago. The two eventually became one. Their fateful partnership revolutionised life on this planet, giving it a surge of power that allowed it to become complex and big (see here for the full story). But the alliance between mitochondria and their host cells is a delicate one.

Both genomes evolve in very different ways. Mitochondrial genes are only passed down from mother to child, whereas the nuclear genome is a fusion of both mum’s and dad’s genes. This means that mitochondria genes evolve much faster than nuclear ones—around 10 to 30 times faster in animals and up to a hundred thousand times faster in some fungi. These dance partners are naturally drawn to different rhythms.

This is a big and underappreciated problem because the nuclear and mitochondrial genomes cannot afford to clash. In a new paper, Nick Lane, a biochemist at University College London, argues that some of the most fundamental aspects of eukaryotic life are driven by the need to keep these two genomes dancing in time. The pressure to maintain this “mitonuclear match” influences why species stay separate, why we typically have two sexes, how many offspring we produce, and how we age.

Read More

CATEGORIZED UNDER: Living World, Top Posts
NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

The Crux

A collection of bright and big ideas about timely and important science from a community of experts.
ADVERTISEMENT

See More

ADVERTISEMENT
Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »