NCBI ROFL: Double feature: swinging and pumping techniques.

By ncbi rofl | September 13, 2011 7:00 pm

An assessment of swinger techniques for the playground swing oscillatory motion.

Much attention has been devoted to how playground swing amplitudes are built up by swinger techniques, i.e. body actions. However, very little attention has been given to the requirements that such swinger techniques place on the swinger himself. The purpose of this study was to find out whether different swinger techniques yield significantly different maximum torques, endurance and coordinative skills, and also to identify preferable techniques. We modelled the seated swinger as a rigid dumbbell and compared three different techniques. A series of computer simulations were run with each technique, testing the performance with different body rotational speeds, delayed onset of body rotation and different body mass distributions, as swing amplitudes were brought up towards 90°. One technique was found to be extremely sensitive to the timing of body actions, limiting swing amplitudes to 50° and 8° when body action was delayed by 0.03 and 0.3 s, respectively. Two other more robust techniques reached 90° even with the largest of these delays, although more time (and endurance) was needed. However, these two methods also differed with respect to maximum torque and endurance, and none was preferable in both these aspects, being dependent on the swinger goals and abilities.”

Pumping a playground swing.

“In mechanical studies of pumping a playground swing, two methods of energy insertion have been identified: parametric pumping and driven oscillation. While parametric pumping involves the systematic raising and lowering of the swinger’s center of mass (CM) along the swing’s radial axis (rope), driven oscillation may be conceived as rotation of the CM around a pivot point at a fixed distance to the point of suspension. We examined the relative contributions of those two methods of energy insertion by inviting 18 participants to pump a swing from standstill and by measuring and analyzing the swing-swinger system (defined by eight markers) in the sagittal plane. Overall, driven oscillation was found to play a major role and parametric pumping a subordinate role, although the relative contribution of driven oscillation decreased as swinging amplitude increased, whereas that of parametric pumping increased slightly. Principal component analysis revealed that the coordination pattern of the swing-swinger system was largely determined (up to 95%) by the swing’s motion, while correlation analysis revealed that (within the remaining 5% of variance) trunk and leg rotations were strongly coupled.”

Photo: flickr/terren in Virginia

Related content:
Discoblog: NCBI ROFL: A scientific analysis of kids in a candy store.
Discoblog: NCBI ROFL: NCAA judges rate blindfolded gymnasts… for science.
Discoblog: NCBI ROFL: An ecological study of glee in small groups of preschool children.

WTF is NCBI ROFL? Read our FAQ!

NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Discoblog

Quirky, funny, and surprising science news from the edge of the known universe.

About ncbi rofl

NCBI ROFL is the brainchild of two Molecular and Cell Biology graduate students at UC Berkeley and features real research articles from the PubMed database (which is housed by the National Center for Biotechnology information, aka NCBI) that they find amusing (ROFL is a commonly-used internet acronym for "rolling on the floor, laughing"). Follow us on twitter: @ncbirofl

ADVERTISEMENT

See More

ADVERTISEMENT
Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »