NCBI ROFL: Characterization of coarse particulate matter in school gyms.

By ncbi rofl | November 25, 2011 3:03 am

“We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM(10-2.5) and PM(2.5-1.0)) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM(10-2.5) 4.1-7.4 μg m(-3) and PM(2.5-1.0) 2.0-3.3 μg m(-3)) than indoors (average PM(10-2.5) 13.6-26.7 μg m(-3) and PM(2.5-1.0) 3.7-7.4 μg m(-3)). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM(10-2.5) and 1.4-4.8 for the PM(2.5-1.0) values. Under extreme conditions, the I/O ratios reached 180 (PM(10-2.5)) and 19.1 (PM(2.5-1.0)). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high concentrations of coarse particulate matter, which can contribute to increased short-term inhalation exposure of exercising children.”

Photo: flickr/USDAgov

Related content:
Discoblog: NCBI ROFL: Effects of university affiliation and “school spirit” on color preferences: Berkeley versus Stanford.
Discoblog: NCBI ROFL: Study proves elementary school bathrooms unpleasant.
Discoblog: NCBI ROFL: Unhappy yearbook photos herald crappier lives.

NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Discoblog

Quirky, funny, and surprising science news from the edge of the known universe.

About ncbi rofl

NCBI ROFL is the brainchild of two Molecular and Cell Biology graduate students at UC Berkeley and features real research articles from the PubMed database (which is housed by the National Center for Biotechnology information, aka NCBI) that they find amusing (ROFL is a commonly-used internet acronym for "rolling on the floor, laughing"). Follow us on twitter: @ncbirofl

ADVERTISEMENT

See More

ADVERTISEMENT
Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »