Brain-Modifying Drugs

By Neuroskeptic | August 4, 2011 8:25 am

What if there was a drug that didn’t just affect the levels of chemicals in your brain, it turned off genes in your brain? That possibility – either exciting or sinister depending on how you look at it – could be remarkably close, according to a report just out from a Spanish group.

The authors took an antidepressant, sertraline, and chemically welded it to a small interfering RNA (siRNA). A siRNA is kind of like a pair of genetic handcuffs. It selectively blocks the expression of a particular gene, by binding to and interfering with RNA messengers. In this case, the target was the serotonin 5HT1A receptor.

The authors injected their molecule into the brains of some mice. The sertraline was there to target the siRNA at specific cell types. Sertraline works by binding to and blocking the serotonin transporter (SERT), and this is only expressed on cells that release serotonin; so only these cells were subject to the 5HT1A silencing.

The idea is that this receptor acts as a kind of automatic off-switch for these cells, making them reduce their firing in response to their own output, to keep them from firing too fast. There’s a theory that this feedback can be a bad thing, because it stops antidepressants from being able to boost serotonin levels very much, although this is debated.

Anyway, it worked. The treated mice showed a strong and selective reduction in the density of the 5HT1A receptor in the target area (the Raphe nuclei containing serotonin cells), but not in the rest of the brain.

Note that this isn’t genetic modification as such. The gene wasn’t deleted, it was just silenced, temporarily one hopes; the effect persisted for at least 3 days, but they didn’t investigate just how long it lasted.

That’s remarkable enough, but what’s more, it also worked when they administered the drug via the intranasal route. In many siRNA experiments, the payload is injected directly into the brain. That’s fine for lab mice, but not very practical for humans. Intranasal administration, however, is popular and easy.

So siRNA-sertraline, and who knows what other drugs built along these lines, may be closer to being ready for human consumption than anyone would have predicted. However… the mouse’s brain is a lot closer to its nose than the human brain is, so it might not go quite as smoothly.

The mind boggles at the potential. If you could selectively alter the gene expression of selective neurons, you could do things to the brain that are currently impossible. Existing drugs hit the whole brain, yet there are many reasons why you’d prefer to only affect certain areas. And editing gene expression would allow much more detailed control over those cells than is currently possible.

Currently available drugs are shotguns and sledgehammers. These approaches could provide sniper rifles and scalpels. But whether it will prove to be safe remains to be seen. I certainly wouldn’t want to be first one to snort this particular drug.

ResearchBlogging.orgBortolozzi, A., Castañé, A., Semakova, J., Santana, N., Alvarado, G., Cortés, R., Ferrés-Coy, A., Fernández, G., Carmona, M., Toth, M., Perales, J., Montefeltro, A., & Artigas, F. (2011). Selective siRNA-mediated suppression of 5-HT1A autoreceptors evokes strong anti-depressant-like effects Molecular Psychiatry DOI: 10.1038/mp.2011.92

ADVERTISEMENT
NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Neuroskeptic

No brain. No gain.

About Neuroskeptic

Neuroskeptic is a British neuroscientist who takes a skeptical look at his own field, and beyond. His blog offers a look at the latest developments in neuroscience, psychiatry and psychology through a critical lens.

ADVERTISEMENT

See More

@Neuro_Skeptic on Twitter

ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Collapse bottom bar
+