Category: Anatomy

Newly discovered rat that can’t gnaw or chew

By Ed Yong | August 21, 2012 7:00 pm

If you only looked at mammals, you could reasonably believe that the chisellers have inherited the earth. Of all the various species of mammals, forty percent are rodents. Rats, mice, squirrels, guinea pigs… all of them have the same modus operandi. They gnaw their way into their food with self-sharpening chisel-like teeth.

Whether tiny gerbil or huge capybara, rodents eat with the same special teeth. The upper and lower jaws each have a single pair of incisors that grow continuously through their lives. The front of each tooth is made from hard enamel, while the back is made of soft dentine. As the rodent gnaws, the incisors scrape at each other, and the dentine wears away faster than the enamel. This creates a permanently sharp edge, useful for cracking into wood, nuts and flesh alike. Once gnawed, the rodent passes its food to the back of their mouths to be chewed by grinding molars.

But on the Indonesian island of Sulawesi, Jacob Esselstyn has discovered a new species of rodent that radically departs from this universal body plan: a “shrew-rat” that he calls Paucidentomys vermidax.Its name –a mash-up of Latin and Greek—gives a clue to its lifestyle. It means “worm-devouring, few-toothed mouse”.

Read More

How the rhino beetle got its horn (and why it cannot lie)

By Ed Yong | July 26, 2012 4:00 pm

The male Japanese rhino beetle wields a huge forked horn on his head. It looks like a jousting weapon, and the male uses it to pry and flip other males off a branch. But it’s also a billboard, a prominent and completely honest advertisement for the male’s quality.

The horns are extremely variable. Small males have pathetic nubbins on their heads, while big ones have unfeasibly large prongs that can grow to two-thirds of their body length. Doug Emlen from the University of Montana has found that the growth of the horns is intimately tied into molecules that reflect how well-nourished the beetles are. Not only that, but the horn is more sensitive to these molecules than any other body part. Well-fed beetles may have larger wings and bodies than poorly-fed ones, but they have much larger horns.

This ornament can’t be faked. It is impossible for a weak beetle to feign rude health by growing a larger horn, so females can rely on the size of the horns to judge a potential partner’s health. And with a body part that conspicuous, they don’t have to look very hard.


The growth of the horns depends on insulin and related molecules called insulin-like growth factors (IGFs). Most people know insulin as the substance that some diabetics have to take, but it and the IGFs are also major players in animal development. Their levels change depending on nutrition, stress and infections, and they control how fast different tissues can grow. They fine-tune the size of an animals’ body so that it’s appropriately sized for the environmental challenges it will face. If there’s plenty of food around, a bigger body will do well, and insulin and IGFs ensure that one is produced.

If every body part was equally responsive to insulin and IGFs, then every bit of an animal would grow at the same size. A big individual would just be a scaled-up version of a small one. But this doesn’t always happen. Some body parts ignore the signals and are much the same size in every individual – the genitals of many insects are a good example. Others, like the rhino beetle’s borns, are hypersensitive and grow huge, out of all proportion to the rest of their bearer’s anatomy.

Emlen studied the beetles’ horns by interfering with their insulin receptors, the molecules that insulin docks with. Without these receptors, insulin becomes a messages without a listener – it has no influence. Emlen silenced the receptors when the beetles were finishing up their larval careers, and ready to transform into adults. At this point, their body size is roughly set, but their adult body parts, like horns, wings and genitals, were still getting bigger.

The loss of insulin signals didn’t affect the beetles’ genitals – they were the same size as those of normal insects. It did, however, make their wings around 2 percent smaller. And it made their horns a whopping 16 percent smaller. This means that the horns are 8 times more sensitive to insulin than wings (which are representative of most other body parts).

Insulin and IGF help to set the size of many other exaggerated animal ornaments, including the antlers of red and fallow deer, the horns of dung beetles, and the giant claws of some crustaceans. You can understand why. These hormones have been coupling the growth of animals to environmental conditions for half a billion years. They form a widespread system, and an easy one to tweak. If a body part becomes subtly more sensitive to these signals, then – Bam! – it’s free to outpace the rest of the body in size.

Here’s the important thing: a change like that would necessarily produce body parts that honestly indicate their owner’s quality. Weak, starving individuals can’t produce big ornaments, because the size of those ornaments is tied to their insulin levels and their insulin levels are tied to their nutritional state. They can’t fake their way to showiness.

This is a subtly different explanation to the one that’s often put forward to explain the evolution of flashy animal ornaments – the handicap principle. It states that low-quality individuals can’t bear the cost of, say, a long tail or a magnificent set of antlers. They would be too conspicuous or heavy. They need strength and health to pull off. Cheats couldn’t bear the burden.

You can understand how the handicap principle would work for a signal that’s already exaggerated, but obviously, those signals didn’t start off that way. They would have had much humbler and smaller origins, when the costs of bearing them would have been low. So, at this early stage of evolution, why didn’t weak individuals cheat by producing larger ornaments?

Emlen’s rhino beetles provide an answer. The signals can’t be faked not because they’re a drain, but because they’re intimately tied into an individual’s physical condition. It’s not that cheaters can’t carry the burden of big ornaments. It’s that cheaters can’t exist.

Reference: Emlen, Warren, Johns, Dworkin & Lavine. 2012. A Mechanism of Extreme Growth and Reliable Signaling in Sexually Selected Ornaments and Weapons. Science http://dx.doi.org/10.1126/science.1224286

More on extreme body parts:

From 250 million years of repression, a wonderland of hats

Giant squid, what big eyes you have. All the better to spot sperm whales with, my dear.

Will we ever run the 100 metres in 9 seconds?

By Ed Yong | July 18, 2012 7:54 am

Here’s the ninth piece from my BBC column

In 2008, at the Beijing Olympic Games, Jamaican sprinter Usain Bolt ran the 100m in just 9.69 seconds, setting a new world record. A year later, Bolt surpassed his own feat with an astonishing 9.58-second run at the 2009 Berlin World Championships. With the 2012 Olympic Games set to begin in London, the sporting world hopes Bolt will overcome his recent hamstring problems and lead yet another victorious attack on the sprinting record. He is arguably the fastest man in history, but just how fast could be possibly go?

That’s a surprisingly difficult question to answer, and ploughing through the record books is of little help. “People have played with the statistical data so much and made so many predictions. I don’t think people who work on mechanics take them very seriously,” says John Hutchinson, who studies how animals move at the Royal Veterinary College in London, UK.

Read More

The world’s smallest fly probably decapitates really tiny ants

By Ed Yong | July 2, 2012 6:31 am

Illustration by Inna-Marie Strazhnik

Some flies, known as phorids, specialise in decapitating ants in a gruesome way. They lay their eggs inside their victims. When the maggots hatch, they move towards the ant’s head, where they gorge upon the brain and other tissues. The ant stumbles about in a literally mindless stupor until the connection between its head and body is dissolved by a enzyme released from the maggot. The head falls off and the adult flies burst out.

There are hundreds of species of phorid flies, each one targeting its own preferred ants. But some ants are naturally defended against these parasites because they’re incredibly small. Most phorids are a few millimetres long. If an ant is the same size, its head wouldn’t be roomy enough for a developing fly. Thailand, for example, is home to an acrobat ant (Crematogaster rogenhoferi) which can be just 2 millimetres long. Surely these workers are safe from decapitating parasites?

No, they’re not. Brian Brown from the Natural History Museum of Los Angeles County has just discovered a Thai phorid that’s just 0.4 millimetres in length. It’s the world’s tiniest fly, small enough to sit comfortably on the eye of a common housefly. It’s easily small enough to fit inside the head of even the smallest acrobat ant. It just goes to show that there is no way of truly escaping from parasites. If you evolve a miniscule body, they will shrink even further in pursuit.

Read More

Geckos evolved sticky feet many times

By Ed Yong | June 27, 2012 5:00 pm

Geckos are superb wall-crawlers. These lizards can scuttle up sheer surfaces and cling to ceilings with effortless grace, thanks to toes that are covered in microscopic hairs. Each of these hairs, known as setae, finishes in hundreds of even finer spatula-shaped split-ends. These ends make intimate contact with the microscopic bumps and troughs of a given surface, and stick using the same forces that bind individual molecules together. These forces are weak, but summed up over millions of hairs, they’re enough to latch a lizard to a wall.

Many geckos have these super-toes, but not all of them. There are around 1,450 species of geckos, and around 40 per cent have non-stick feet. A small number are legless, and have no feet at all. Initially, scientists assumed that the sticky toes evolved once in the common ancestor of all the wall-crawling species. That’s a reasonable assumption given that the toes look superficially similar. It’s also wrong.

Tony Gamble from the University of Minnesota has traced the evolutionary relationships of almost all gecko groups, and shown that these lizards have evolved their wall-crawling acumen many times over. In the gecko family tree, eleven branches evolved sticky toes independently of each other, while nine branches lost these innovations.

Read More

New sense organ helps giant whales to coordinate the world’s biggest mouthfuls

By Ed Yong | May 23, 2012 1:00 pm

The world’s largest animals have been hiding something. The bodies of the giant rorqual whales—including the blue, fin and humpback—have been regularly displayed in museums, filmed by documentary makers, and harpooned by hunters. Despite this attention, no one noticed the volleyball-sized sense organ at the tips of their lower jaws. Nicholas Pyenson from the Smithsonian Institution is the first, and he thinks that the whales use this structure to coordinate the planet’s biggest mouthfuls.

Read More

Kangaroos have three vaginas

By Ed Yong | April 17, 2012 11:20 am

We interrupt your regularly scheduled news programming to bring you this wonderful piece of trivia about kangaroo genitals.

Regular readers will know of my love for Inside Nature’s Giants, the British documentary where anatomists cut up large animals to examine how their bodies work and evolved. It’s a truly incredible show, combining unbridled joy at the natural world, drama, and solid educational value.

So far, it has brought us the horrifying throat of a leatherback turtle, the mysterious bloodsweat of a hippo, and the exploding insides of a beached whale. But this week’s episode may have topped all of that with the triple vaginas of the female kangaroo. The diagram above (an annotated screengrab from the show) explains the complicated plumbing.

This set-up is shared by all marsupials – the group of mammals that raise their young in pouches. Koalas, wombats and Tasmanian devils all share the three-vagina structure. The side ones carry sperm to the two uteruses (and males marsupials often have two-pronged penises), while the middle vagina sends the joey down to the outside world.

Note that the ureters, which carry urine from the kidneys to the bladder, pass through the gaps between the three tubes. In placental mammals, like us, the ureters develop in a different way, and don’t go through the reproductive system. As we develop, the precursors to the reproductive tubes eventually fuse into a single vagina. In marsupials, this can’t happen.

The programme also suggested that this might explain why marsupial embryos are born at such a premature stage of development. A kangaroo’s joey is about the size of a jellybean when it leaves the vagina, and it must endure an arduous crawl into the pouch. It’s possible that with such a narrow tube to go down, it couldn’t get any bigger before its birth.

With its complicated reproductive set-up, a female kangaroo can be perpetually pregnant. While one joey is developing inside the pouch, another embryo is held in reserve in a uterus, waiting for its sibling to grow up and leave. Indeed, a mother kangaroo can nourish three separate youngsters at a time – an older joey that has left the pouch, a young one developing inside it, and an embryo still waiting to be born.

Giant squid, what big eyes you have. All the better to spot sperm whales with, my dear.

By Ed Yong | March 15, 2012 12:40 pm

The giant squid sees the world with eyes the size of soccer balls. They’re at least 25 centimetres (10 inches) across, making them the largest eyes on the planet.

For comparison, the largest fish eye is the 9-centimetre orb of the swordfish. It would fit inside the giant squid’s pupil! Even the blue whale – the largest animal that has ever existed – has measly 11-centimetre-wide eyes.

So why the huge leap in size? Why does the giant squid have a champion eye that’s at least twice the size of the runner-up?

Dan-Eric Nilsson and Eric Warrant from Lund University, Sweden, think that the squid must have evolved its eye to cope with some unique challenge that other animals don’t face. They suggest that the world’s biggest eyes evolved to spot one of the world’s biggest predators – the sperm whale.

Read More

Will we ever restore sight to the blind?

By Ed Yong | March 12, 2012 9:00 am

Here’s the third piece from my new BBC column

A 46 year-old man called Miikka spotted a simple spelling mistake. A group of scientists had misspelled his name as Mika. He told them as much, and they responded with delight. Why? It was the clearest evidence yet that Miikka, who had been blind for many years, might be able to see again.

This miracle is thanks to a pioneering chip implanted in his retina. Just as cochlear implants have restored hearing to people once considered deaf, devices like this are being developed that can restore sight to the blind.

Miikka suffers from a particular form of blindness called retinitis pigmentosa, an inherited disease that gradually destroys the light-detecting cells of the retina. As the cells die, a person’s field of view begins to collapse from the edges. Miikka’s case was so advanced that he could only sense the direction of a bright light, and he needed a cane to get around.

Read More

Jumping spiders use blurry vision to judge distance

By Ed Yong | January 26, 2012 2:00 pm

We don’t like blurry vision, and we go out of our way to correct it with glasses and contact lenses. But some animals aren’t so fussy. The jumping spider not only tolerates blurry images, it deliberately produces them.

Jumping spiders, as their name suggests, leap onto their prey from afar. They judge their jumps using the two huge (and rather beautiful) eyes on the front of their faces. And to gauge how far away their targets are, they use special retinas that produce sharp images and out-of-focus ones at the same time.

Other animals have many different ways of judging depth, but none of them apply to jumping spiders. Humans mostly rely on our two eyes. Each gets a slightly different view of the world and our brain uses these differences to triangulate the distance to objects in front of us. But this ‘binocular vision’ only works if the two eyes see overlapping parts of the world. Those of jumping spiders do not.

Chameleons can judge distance by sensing how much they have to focus their eyes to bring an object into sharp relief.  But jumping spiders have no way of actively focusing their eyes. Finally, some insects judge distance by shaking their heads from side to side, which makes nearby objects move further across their field of view than far ones. But jumping spiders can accurately pounce onto their prey without moving their heads.

Without any of these three methods, how could they possibly gauge their precise killing pounces with any sort of accuracy? Takashi Nagata from Osaka City University has the answer.

Each of the front eyes has a unique staircase-shaped retina, with four layers of light-sensitive cells lying one over the other. By contast, our retinas only have one such layer. Scientists have known about the staircase retinas since the 1980s, but Nagata has finally shown exactly what they do.  He found that the top two layers are most sensitive to ultraviolet light. The two on the bottom have a penchant for green.

And that’s a bit odd. The way the layers are stacked means that green light only ever focuses sharply on the bottom one (layer 1). Blue light focuses on the one above it (layer 2), but those cells aren’t sensitive to blue. Instead, they see the world in fuzzy out-of-focus green.

Nagata thinks that this fuzzy vision isn’t a bug; it’s a feature. The amount of blur depends on an object’s distance from the spider’s eye. The closer it is, the more out of focus it is on the second retina. Meanwhile the first retina always gets a sharp image. By comparing the images on both layers, the spider can gauge depth with a single unmoving eye.

To test this idea, Nagata placed Adanson’s house jumpers in a special arena where they had to leap at prey. If the arena was flooded with green light, the spiders made accurate jumps. If Nagata used red light of equal brightness, they fell short of the mark. Nagata even created a mathematical model for the spider’s eye to predict how far it would miss its jump under different wavelengths of light. The model’s predictions matched the animal’s actual behaviour.

Humans actually do something similar. We can use the blurry nature of background images to get a sense of distance, even if all other cues are removed. Indeed, photographers often use blurry backgrounds to create a greater sense of depth. But this is just one of the tricks we use to judge depth, and perhaps a minor one. For the jumping spider, it seems to be the only trick in the playbook.

Reference: Nagata, Koyanagi, Tsukamoto, Saeki, Isono, Shichida, Tokunaga, Kinoshita, Arikawa & Terakita. 2011. Depth Perception from Image Defocus in a Jumping Spider. Science http://dx.doi.org/10.1126/science.1211667

Photo by Alex Wild

The eyes have it – a tour through the stunning world of animal eyes

heteronectes
bobtail-squid
box_jellyfish
cavefish
chiton
eye
eye_intro
mantis_shrimp
raccoon
spookfish
sunburst_beetle
zebrafish

NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Not Exactly Rocket Science

Dive into the awe-inspiring, beautiful and quirky world of science news with award-winning writer Ed Yong. No previous experience required.
ADVERTISEMENT

See More

ADVERTISEMENT
Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »