Category: Evolutionary arms races

Male water striders evolved antennae to grab females by the eyes

By Ed Yong | May 3, 2012 2:00 pm

The worst sex you have ever had pales in comparison to what female water striders have to put up with. Put it this way: you have never been held down by your eyes.

As the female skates over the surface of ponds and lakes, males will try to force themselves upon her. She resists by struggling vigorously. But in some species, males can avoid being thrown off with antennae that have evolved into antler-shaped restraints. They bend in on themselves and are loaded with an array of prongs and spikes that perfectly fit to the shape of a female’s head.

Locke Rowe from the University of Toronto has been studying water striders for almost 20 years. In many species, males have evolved structures that give them an edge in their indelicate liaisons with females. “But the traits I studied before were rather simple – a spine here or there,” says Rowe. The subject of his latest study, a species called Rheumatobates rileyi – is… well, the opposite of simple.

Read More

Giant squid, what big eyes you have. All the better to spot sperm whales with, my dear.

By Ed Yong | March 15, 2012 12:40 pm

The giant squid sees the world with eyes the size of soccer balls. They’re at least 25 centimetres (10 inches) across, making them the largest eyes on the planet.

For comparison, the largest fish eye is the 9-centimetre orb of the swordfish. It would fit inside the giant squid’s pupil! Even the blue whale – the largest animal that has ever existed – has measly 11-centimetre-wide eyes.

So why the huge leap in size? Why does the giant squid have a champion eye that’s at least twice the size of the runner-up?

Dan-Eric Nilsson and Eric Warrant from Lund University, Sweden, think that the squid must have evolved its eye to cope with some unique challenge that other animals don’t face. They suggest that the world’s biggest eyes evolved to spot one of the world’s biggest predators – the sperm whale.

Read More

Flies drink alcohol to medicate themselves against wasp infections

By Ed Yong | February 20, 2012 9:00 am

Some people drink alcohol to drown their sorrows. So does the fruit fly Drosophila melanogaster, but its sorrows aren’t teary rejections or lost jobs. It drinks to kill wasps that have hatched inside its body, and would otherwise eat it alive. It uses alcohol as a cure for body-snatchers.

D.melanogaster lives in a boozy world. It eats yeasts that grow on rotting fruit, which can contain up to 6 per cent alcohol. Being constantly drunk isn’t a good idea for a wild animal, and the flies have evolved a certain degree of resistance to alcohol. But Neil Milan from Emory University has found that alcohol isn’t just something that the insect tolerates. It’s also fly medicine.

Read More

House mice picked up poison resistance gene by having sex with related species

By Ed Yong | July 21, 2011 12:00 pm

Since 1948, people have been poisoning unwanted rats and mice with warfarin, a chemical that causes lethal internal bleeding. It’s still used, but to a lesser extent, for rodents have become increasingly resistant to warfarin ever since the 1960s. This is a common theme – humans create a fatal chemical – a pesticide or an antibiotic – and our targets evolve resistance. But this story has a twist. Ying Song from Rice University, Houston, has found that some house mice picked up the gene for warfarin resistance from a different species.

Warfarin works by acting against vitamin K. This vitamin activates a number of genes that create clots in blood, but it itself has to be activated by a protein called VKORC1. Warfarin stops VKORC1 from doing its job, thereby suppressing vitamin K. The clotting process fails, and bleeds continue to bleed.

Rodents can evolve to shrug off warfarin by tweaking their vkorc1 gene, which encodes the protein of the same name. In European house mice, scientists have found at least 10 different genetic changes (mutations) in vkorc1 that change how susceptible they are to warfarin. But only six of these changes were the house mouse’s own innovations. The other four came from a close relative – the Algerian mouse, which is found throughout northern Africa, Spain, Portugal, and southern France.

The two species separated from each other between 1.5 and 3 million years ago. They rarely meet, but when they do, they can breed with one another. The two species have identifiably different versions of vkorc1. But Song found that virtually all Spanish house mice carry a copy of vkorc1 that partially or totally matches the Algerian mouse version. Even in Germany, where the two species don’t mingle, a third of house mice carried copies of vkorc1 that descended from Algerian peers.

Read More

Fighting evolution with evolution – using viruses to target drug-resistant bacteria

By Ed Yong | May 31, 2011 7:00 pm

We are losing the war against infectious bacteria. They are becoming increasingly resistant to our antibiotics, and we have few new drugs in the pipeline. Worse still, bacteria can transfer genes between each other with great ease, so if one of them evolves to resist an antibiotic, its neighbours can pick up the same ability. But Matti Jalasvuori from the University of Jyvaskyla doesn’t see this microscopic arms-dealing as a problem.  He sees it as a target.

Usually, antibiotic-resistance genes are found on rings of DNA called plasmids, which sit outside a bacterium’s main genome. Bacteria can donate these plasmids to one another, via their version of sex. The plasmids are portable adaptations – by trading them, bacteria can rapidly respond to new threats. But they aren’t without their downsides. Plasmids can sometimes attract viruses.

Bacteriophages (or “phages” for short) are viruses that infect and kill bacteria, and some of them specialise on those that carry plasmids. These bacteria may be able to resist antibiotics, but against the phages, their resistance is futile.

Read More

Staying out of the arms race, or when evolution goes “meh”

By Ed Yong | February 8, 2011 7:00 pm

“He who knows when he can fight and when he cannot will be victorious.” – Sun Tzu, The Art of War

Some battles aren’t worth fighting. The rewards of victory are too small or the costs of combat are too high. Good generals know this, and so does evolution. The natural world is full of intense arms races between predators and prey, hosts and parasites. If one side evolves a small advantage, the other counters it with an adaptation of their own, and both species are locked in an ever-escalating stalemate. But sometimes, these arms races never take off. The  costs of engagement just aren’t worth it.

Oliver Kruger from the University of Bath has found one such example in South Africa, where a small local bird called the Cape bulbul is plagued by the Jacobin cuckoo. Like many other cuckoos, the Jacobin is a “brood parasite”, an animal that relies on others to rear its young. It lays its eggs in a bulbul nest, palming off its own young to unwitting surrogate parents.

Cuckoos and their hosts are usually excellent examples of evolutionary arms races. Over time, the cuckoo eggs evolve to look like the eggs of their hosts. In turn, the hosts evolve a sharper eye to tell the difference between the fakes and their own young. But that’s not the case for the Jacobin. Its egg is twice the size of a bulbul one, and its white shell stands out among the speckled brown colours of the others in the nest. It should be very easy for a bulbul to recognise and deal with the interloper. But instead, it doesn’t harm the egg and its feeds the hatchling as if it were its own. Why?

Read More

Evolutionary arms race turns ants into babysitters for Alcon blue butterflies

By Ed Yong | October 16, 2010 9:00 am


This is an old article, reposted from the original WordPress incarnation of Not Exactly Rocket Science. I’m travelling around at the moment so the next few weeks will have some classic pieces and a few new ones I prepared earlier.

In the meadows of Europe, colonies of industrious team-workers are being manipulated by a master slacker. The layabout in question is the Alcon blue butterfly (Maculinea alcon) a large and beautiful summer visitor. Its victims are two species of red ants, Myrmica rubra and Myrmica ruginodis.

The Alcon blue is a ‘brood parasite’ – the insect world’s equivalent of the cuckoo. David Nash and European colleagues found that its caterpillars are coated in chemicals that smell very similar to those used by the two species it uses as hosts. To ants, these chemicals are badges of identity and the caterpillars smell so familiar that the ants adopt them and raise them as their own. The more exacting the caterpillar’s chemicals, the higher its chances of being adopted.

The alien larvae are bad news for the colony, for the ants fawn over them at the expense of their own young, which risk starvation. If a small nest takes in even a few caterpillars, it has more than a 50% chance of having no brood of its own. That puts pressure on the ants to fight back and Nash realised that the two species provide a marvellous case study for studying evolutionary arms races.

Read More

Ninja bat whispers to sneak up on moths

By Ed Yong | August 19, 2010 12:00 pm

Batman's logo became much more detailed over the yearsBatman’s logo became a lot more detailed over the years…

The night sky is the setting for an arms race that has been going on for millions of years: a conflict between bats and moths. Many bats can find their prey by giving off high-pitched squeaks and listening out for the echoes that return. This ability – echolocation – allows them to hunt night-flying insects like moths, which they skilfully pluck out of the air. But moths have developed countermeasures; some have evolved ears that allow them to hear the calls of a hunting bat and take evasive action. And bats, in turn, have adapted to overcome this defence.

Holger Goerlitz from the University of Bristol has found that the barbastelle bat is a stealth killer that specialises in eating moths with ears. Its echolocation calls are 10 to 100 times quieter than those of other moth-hunting bats and these whispers allow it to sneak up on its prey. It’s the latest move in an ongoing evolutionary dogfight and for now, the barbastelle has the upper wing.

Read More

Rotifers find answer to parasites by blowing on the wind

By Ed Yong | January 28, 2010 2:00 pm

When our lives are in danger, some humans go on the run, seeking refuge in other countries far away from the threats of home. Animals too migrate to escape danger but one group – the pond-living bdelloid rotifers – have taken this game of hide-and-seek to an extreme.

If they are threatened by parasitic fungi, they completely remove any trace of water in their bodies, drying themselves out to a degree that their parasites can’t stand. In this desiccated state, they ride the wind to safety, seeking fresh pastures where they can establish new populations free of any parasites.

This incredible strategy may be partially responsible for another equally remarkable one – the complete abandonment of sex. For over 80 million years, the bdelloids (pronounced with a silent ‘b’) have lived an asexual existence. Daughters are identical clones of their mothers, budded off from her body. No males have ever been discovered. For this reason, Olivia Judson once described bdelloid rotifers as an “evolutionary scandal”. Their sexless lifestyles simply shouldn’t work in the long run.

Ditching sex allows an animal to efficiently pass all of its genes to the next generation without having to seek out a mate. This should give asexual animals a big advantage but not so. Sex provides fuel for evolution. Every time two individuals meet in flagrante, their chromosomes are joined, shuffled and re-dealt to the next generation. In this way, sex begets diversity, remixing genes into exciting new combinations.

This diversity is a vital weapon in the never-ending war against parasites. Parasites, with their large populations and short generations, are quick to evolve new ways of exploiting their hosts. They could have their run of a genetically uniform population and soon bring it to its knees. A sexually active species is a harder target. With genes that shuffle every generation, new anti-parasite adaptations are always just one bout of mating away. And so it goes, again and again, with hosts constantly having to outrun their parasites and sex acting as the getaway vehicle.

So asexual reproduction, for all its immediate gains, should be a poor long-term strategy compared to the dynamic nature of sex. Bdelloids have clearly addressed this problem and thanks to the last few years of research, we know how. They have evolved ways of achieving every single one of the many benefits of sex, without actually doing the deed. Escape parasites? They’ve got that covered. Shuffle their genes? They do that too. Generate genetic diversity? Check. 

Read More

Tobacco plants foil very hungry caterpillars by switching pollinators to hummingbirds

By Ed Yong | January 21, 2010 12:00 pm

The partnerships between flowering plants and the animals that pollinate them are some of the most familiar in the natural world. The active nature of animals typically casts the plants as the passive partners in this alliance, but in reality, they’re just as involved. That becomes particularly apparent when the animals renege on their partnership.

Nicotinia attenuata, a type of wild US tobacco, is usually pollinated by hawkmoths. To lure them in, it opens its flowers at night and releases alluring chemicals. But pollinating hawkmoths often lay their eggs on the plants they visit and the voracious caterpillars start eating the plants. Fortunately for the plant, it has a back-up plan. It stops producing its moth-attracting chemicals and starts opening its flowers during the day instead. This simple change of timing opens its nectar stores to a very different pollinator that has no interest in eating it – the black-chinned hummingbird. 

Danny Kessler from the Max Planck Institute first noticed the tobacco plant’s partner-swapping antics by watching a population of flowers that was overrun by hawkmoth caterpillars. Nearly every plant was infested. To Kessler’s surprise, around one in six flowers started opening between 6 and 10am, rather than their normal business hours of 6 and 10pm. To see if the two trends were related, Kessley deliberately infested plants from another population with young hawkmoth larvae. 

Eight days later, and 35% of the flowers had started opening in the morning, compared to just 11% of uninfested plants. The flowers use a cocktail of various chemicals to lures in night-flying moths, but the main ingredient is benzyl acetone (BA). A large plume gets releases when the flower opens at night. It’s so essential that genetically modified plants, which can’t produce BA, never manage to attract any moths. Nonetheless, the flowers that opened in the morning never produced any BA.

By artificially boosting the nectar yield of specific flowers, Kessler showed that hawkmoths are more likely to lay eggs on plants that reward them with the most nectar. So by putting off the adult hawkmoths from visiting the flowers, the plants gained a reprieve from future onslaughts by their larvae.

The larvae themselves prompt the switch. As they munch away, their saliva releases complex mixtures of fats and amino acids into the wounds they create. This cocktail trigger a genetic alarm in the plant’s cells, which culminates in a burst of jasmonic acid. This all-important plant chemical coordinates a variety of defences, from producing poisons to summoning predators and parasitic wasps. In this case, it’s responsible for shifting the flowers’ blooming schedule.

Kessler demonstrated the role of the caterpillars’ saliva and jasmonic acid through a clever series of experiments. Even if no larvae are around, just adding their saliva to artificial wounds causes some plants to switch to the morning opening hours. If the plants are genetically modified so that they can’t produce jasmonic acid, the entire process grinds to a halt, rescued only by the artificial addition of jasmonic acid.

Having solved the problem of the very hungry caterpillars, the plants still need pollinators. Again, the revised opening schedule provides the solution. Through painstaking field observations, Kessler showed that hummingbirds were strongly attracted to the morning blossoms, almost always visiting these flowers first. The birds have apparently learned to associate the shape of the opened flowers with the prospect of a rich, early-morning beakful of nectar. The plant gets a new partner, while avoiding the unwanted shenanigans of its old one.

Hummingbirds, of course, never eat other parts of the plant but if they’re such compliant partners, why doesn’t the tobacco plant always open its flowers in the morning? We don’t know, but Kessler suggests that the birds, for all their strengths, may not be quite as reliable as the moths. Hummingbirds are more likely to drink from multiple flowers on the same plant, which would lead to a lot of self-fertilisation. They’re more restricted by geographical factors, such as the presence of nearby nest sites. And, unlike hawkmoths, they can’t be summoned across long distances through the simple use of smell.

Picture by Stan Shebs

Reference: Kessler et al. 2010. Changing Pollinators as a Means of Escaping Herbivores. Current Biology

More on pollination:




Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Not Exactly Rocket Science

Dive into the awe-inspiring, beautiful and quirky world of science news with award-winning writer Ed Yong. No previous experience required.

See More

Collapse bottom bar