Tag: cascades

Pay it forward? Cooperative behaviour spreads through a group, but so does cheating

By Ed Yong | March 8, 2010 3:00 pm

Ever wonder if acts of kindness or malice really do ripple outwards? If you give up a seat on a train to a stranger, do they go onto “pay it forward” to others? Likewise, if you steal someone’s seat, does the bad mood you engender topple over to other people like a set of malicious dominoes? We’d all probably assume that the answers to both questions were yes, but James Fowler and Nicholas Christakis think they have found experimental evidence for the contagious nature of cooperation and cheating.

The duo analysed data from an earlier psychological experiment by Ernst Fehr and Simon Gachter, where groups of four volunteers had to decide how much money to put in a public pot. For every unit they chipped in, each member would get 0.4 back. So any donations represent a loss to the donor, but a gain to the group as a whole. The best way for the group to benefit would be for everyone to put in all their money, but each individual player could do even better by putting in nothing and feeding off their peers’ generosity.  

This “public goods game” went on for six rounds. At the end of each one, the players were told what their other comrades did, although everyone’s identities were kept secret. The groups were shuffled between rounds so that players never played with each other more than once.

Fowler and Christakis found that the volunteers’ later moves were influenced by the behaviour of their fellow players. Each act of generosity by an individual influenced the other three players to also give more money themselves, and each of them influenced the people they played with later. One act became three, which became nine. Likewise, players who experienced stingy strategies were more likely to be stingy themselves.

Even though the groups swapped every time, the contagious nature of generous or miserly actions carried on for at least three degrees of separation. You can see an example of one such cascade in the diagram below. Eleni contributes some money to the public pot and her fellow player, Lucas, benefits (one degree). In the next round, Lucas himself offers money for the good of the group, which benefits Erika (two degrees), who gives more when paired with Jay in her next game (three degrees). Meanwhile, the effects of Eleni’s initial charity continue to spread throughout the players as Lucas and Erika persist in their cooperation in later rounds.

Payitforward.jpg

Read More

How diversity creates itself – cascades of new species among flies and parasitic wasps

By Ed Yong | February 9, 2009 8:30 am

This is the second of eight posts on evolutionary research to celebrate Darwin’s bicentennial.

Blogging on Peer-Reviewed ResearchWhat do you get when one species splits into separate lineages? Two species? Think bigger…

When new species arise, they can set off evolutionary chain reactions that cause even more new species to spring forth – fresh buds on the tree of life create conditions that encourage more budding on different branches.

Biologists have long suspected that these “cascades of speciation” exist  but have struggled to test them. Enter Andrew Forbes from the University of Notre Dame – his team of has found a stunning new proof of the concept by studying a fruit fly called the apple maggot (Rhagoletis pomonella) and the parasitic wasps that use it as a host.

Contrary to its name, the apple maggot’s natural host is not apples – it’s hawthorn. The fly only developed a taste for apples about 150 years ago, when the fruit was first introduced to North America. This culinary switch has created two races of apple maggot – one that eats hawthorn and another that eats apples. Even though they are often found in the same place, the two races don’t mix and they don’t breed together. They are well on the road to becoming separate, genetically distinct species.

And so are their parasites. A wasp called Diachasma alloeum specialises in attacking apple maggots. It lays its eggs inside the fly larvae, and its grubs eat the victim from the inside out. Forbes found that the wasp has also started to form separate races that don’t crossbreed with one another, even though they have overlapping ranges. By adapting to new host plants, the flies inadvertently set up barriers that separated their respective parasites from one another. Now, the wasp, like its hosts, are also on the way to becoming separate species. It’s a fantastic example of diversity bringing itself about.

Read More

NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Not Exactly Rocket Science

Dive into the awe-inspiring, beautiful and quirky world of science news with award-winning writer Ed Yong. No previous experience required.
ADVERTISEMENT

See More

ADVERTISEMENT
Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »