Tag: children

The development of fairness – egalitarian children grow into meritocratic teens

By Ed Yong | May 28, 2010 9:00 am

Children_fairnessTwo children, Anne and Carla, have worked together to make a cake and they have to split it between them. Anne says that she’s the bigger cake aficionado and deserves the lion’s share. But Carla demands the bigger slice since she did most of the cooking. A nosy third party, Brenda, argues that the only fair call would be for the two girls to split the cake equally. Which is the right path?

There’s no obvious right answer and different people will probably side with different viewpoints. Dilemmas like this have been the subject of much philosophical debate, and they’re a common part of everyday life. How do you allocate pay rises between your staff? How should the UK’s new government split its budget among its various departments?

According to Norwegian scientist Ingvild Almås, our attitudes to such questions change during our childhood and adolescence, as we start changing our opinions on what counts as ‘fair’. Children tend to shun any form of inequality – they’d agree with Brenda. But as they enter the turmoil of adolescence, they become more meritocratic and are happier to divide wealth according to individual achievements, as Carla suggested. As their teens draw to a close, they (like Anne) pay greater heed to efficiency, making choices of maximum benefit to the group.

Read More

Bilingual children learn language rules more efficiently than monolinguals

By Ed Yong | July 11, 2009 12:00 pm

Blogging on Peer-Reviewed ResearchAs Eddie Izzard notes in the video above, the English, within our cosy, post-imperialist, monolingual culture, often have trouble coping with the idea of two languages or more jostling about for space in the same head. “No one can live at that speed!” he suggests. And yet, bilingual children seem to cope just fine. In fact, they pick up their dual tongues at the same pace as monolingual children attain theirs, despite having to cope with two sets of grammar and vocabulary. At around 12 months, both groups produce their first words and after another six months, they know around 50.

Italian psychologists Agnes Melinda Kovacs and Jacques Mehler have found that part of their skill lies in being more flexible learners than their monolingual peers. Their exposure to two languages at an early point in their lives trains them to extract patterns from multiple sources of information.

Kovacs and Mehler demonstrated that by sitting a group of year-old infants in front of a computer screen and playing them a three-syllable word. The infants could use the word’s structure to divine where a cuddly toy would appear on the screen – if the first and last syllables were the same (“lo-vu-lo”), it would show up on the right, but if the first and second syllables matched (“lo-lo-vu”), it appeared on the left. By watching where they were looking, the duo could tell if they were successfully predicting the toy’s position.

Success depended on learning two separate linguistic structures over the course of the experiment. The infants had to discern the difference between ‘AAB’ words and ‘ABA’ words and linking them to one of the two possible toy locations. After 36 trials where they got to grips with the concept, Kovacs and Mehler tested the infants with eight different words.

Read More

Deformed skull of prehistoric child suggests that early humans cared for disabled children

By Ed Yong | March 30, 2009 5:00 pm

Blogging on Peer-Reviewed ResearchFor all appearances, this looks like the skull of any human child. But there are two very special things about it. The first is that its owner was clearly deformed; its asymmetrical skull is a sign of a medical condition called craniosynostosis that’s associated with mental retardation. The second is that the skull is about half a million years old. It belonged to a child who lived in the Middle Pleistocene period.

The skull was uncovered in Atapuerca, Spain by Ana Gracia, who has named it Cranium 14. It’s a small specimen but it contains enough evidence to suggest that the deformity was present from birth and that the child was about 5-8 years old. The remains of 28 other humans have been recovered from the same site and none of them had any signs of deformity.

These facts strongly suggest that prehistoric humans cared for children with physical and mental deformities that would almost have certainly prevented them from caring for themselves. Without such assistance, it’s unlikely that the child would have survived that long.

Read More

Autistic children are less sensitive to the movements of living things

By Ed Yong | March 30, 2009 8:00 am

Blogging on Peer-Reviewed ResearchFor any animal, it pays to be able to spot other animals in order to find mates and companions and to avoid predators. Fortunately, many animals move in a distinct way, combining great flexibility with the constraints of a rigid skeleton – that sets them apart from inanimate objects like speeding trains or flying balls. The ability to detect this “biological motion” is incredibly important. Chicks have it. Cats have it. Even two-day-old babies have it. But autistic children do not.

Ami Klim from Yale has found that two-year-old children with autism lack normal preferences for natural movements. This difference could explain many of the problems that they face in interacting with other people because the ability to perceive biological motion – from gestures to facial expressions – is very important for our social lives.

Indeed, the parts of the brain involved in spotting them overlap with those that are involved in understanding the expressions on people’s faces or noticing where they are looking. Even the sounds of human motion can activate parts of the brain that usually only fire in response to sights.

You can appreciate the importance of this “biological motion” by looking at “point-light” animations, where a few points of light placed at key joints can simulate a moving animal. Just fifteen dots can simulate a human walker. They can even depict someone male or female, happy or sad, nervous or relaxed. Movement is the key – any single frame looks like a random collection of dots but once they move in time, the brain amazingly extracts an image from them.

But Klim found that autistic children don’t have any inclination toward point-light animations depicting natural movement. Instead, they were attracted to those where sounds and movements were synchronised – a feature that normal children tend to ignore. Again, this may explain why autistic children tend to avoid looking at people’s eyes, preferring instead to focus on their mouths.

Alim created a series of point-light animations used the type of motion-capture technology used by special effects technicians and video game designers. He filmed adults playing children’s games like “peek-a-boo” and “pat-a-cake” and converted their bodies into mere spots of light. He then showed two animations side-by-side to 76 children, of whom 21 had autism, 16 were developing slowly but were not autistic, and 39 were developing normally.

Read More

Babies' gestures partly explain link between wealth and vocabulary

By Ed Yong | February 17, 2009 8:38 am

Blogging on Peer-Reviewed ResearchBabies can say volume without saying a single word. They can wave good-bye, point at things to indicate an interest or shake their heads to mean “No”. These gestures may be very simple, but they are a sign of things to come. Year-old toddlers who use more gestures tend to have more expansive vocabularies several years later. And this link between early gesturing and future linguistic ability may partially explain by children from poorer families tend to have smaller vocabularies than those from richer ones.

Vocabulary size tallies strongly with a child’s academic success, so it’s striking that the lexical gap between rich and poor appears when children are still toddlers and can continue throughout their school life. What is it about a family’s socioeconomic status that so strongly affects their child’s linguistic fate at such an early age?

Obviously, spoken words are a factor. Affluent parents tend to spend more time talking to their kids and use more complicated sentences with a wider range of words. But Meredith Rowe and Susan Goldin-Meadow from the University of Chicago found that actions count too.

Children gesture before they learn to speak and previous studies have shown that even among children with similar spoken skills, those who gesture more frequently during early life tend to know more words later on. Rowe and Goldin-Meadow have shown that differences in gesturing can partly explain the social gradient in vocabulary size.

Read More

CATEGORIZED UNDER: Child development, Language, Learning

A mismatch between nutrition before and after birth can lead to poor health

By Ed Yong | February 15, 2009 9:50 am

Revisitedbanner.jpg

Blogging on Peer-Reviewed ResearchA child in the womb is not just some hapless creature waiting to be born into a world of experience. It is preparing. Through its mother, it senses the conditions of the world outside and its body plans its growth accordingly.

A mother's diet prepares her baby for life ahead.There is strong evidence that people who are under-nourished as embryos grow up to have higher risks of heart disease and other chronic illnesses. For example, people born to women during the Dutch Famine of 1945 had higher risks of coronary heart disease as adults.

We might nod our heads at this as if it were expected news, but it’s actually quite a strange result. After all, during the early stages of pregnancy, the embryo is actually relatively undemanding. Any embryos that get off to an early slow start can easily catch up during the foetal stage, and they can certainly do it after birth. But Jane Cleal and colleagues from the University of Southampton have found, from studying sheep, that catching up may actually be the problem.

Read More

Did conflict between old and young women drive origin of menopause?

By Ed Yong | April 1, 2008 8:30 am

Blogging on Peer-Reviewed ResearchYou could argue that life is all about cheating death and having enough sex to pass on your genes to the next generation, as many times as possible. From this dispassionate viewpoint, human reproduction is very perplexing for our reproductive potential has an early expiry date.  At an average age of 38, women start becoming rapidly less fertile only to permanently lose the ability to have children some 10 years later during menopause.

Pregnant.jpgFrom an evolutionary point of view, this decline is bizarre. Other long-lived animals stay fertile until close to the end of their lives, with elephants breeding until their 60s and the great whales doing so in their 90s. In comparison, a human woman is exceptional in losing her child-bearing potential years or decades before losing her life. Even in hunter-gatherer societies that lack our access to modern medicine and technology, women who pass through menopause can expect to live well into their sixties.

Now, a pair of scientists have proposed a new model to explain the origins of menopause.  Michael Cant from the University of Exeter and Rufus Johnstone from the University of Cambridge suggest that the loss of fertility helps to lessen reproductive conflicts between successive generations of women.

A few theories have already  been put forward to resolve this conundrum. I’ve previously blogged about one of these, which suggests that the menopause reduces the health risks that repeated childbirth brings to both mother and child. This idea complements the most popular theory, known as the “grandmother hypothesis“, which suggests that older, infertile women can still boost their reproductive legacy by feeding, teaching and caring for their existing children and grandchildren.

The basic idea makes sense and while some studies have backed it up, it’s clearly not the whole story. Some analyses of hunter-gatherer populations have found that the indirect advantages of helping your family don’t outweigh the potential benefits of having more children yourself. Alone, the grandmother hypothesis can explain why women continue to live past the menopause, but not why they go through it in the first place.

Read More

NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Not Exactly Rocket Science

Dive into the awe-inspiring, beautiful and quirky world of science news with award-winning writer Ed Yong. No previous experience required.
ADVERTISEMENT

See More

ADVERTISEMENT
Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »