Tag: convergent

Echolocation in bats and whales based on same changes to same gene

By Ed Yong | January 25, 2010 12:00 pm

Millions of years before humans invented sonar, bats and toothed whales had mastered the biological version of the same trick – echolocation. By timing the echoes of their calls, one group effortlessly flies through the darkest of skies and the other swims through the murkiest of waters. It’s amazing enough that two such different groups of mammals should have evolved the same trick but that similarity isn’t just skin deep.

The echolocation abilities of bats and whales, though different in their details, rely on the same changes to the same gene – Prestin. These changes have produced such similar proteins that if you drew a family tree based on their amino acid sequences, bats and toothed whales would end up in the same tight-knit group, to the exclusion of other bats and whales that don’t use sonar.

This is one of the most dramatic examples yet of ‘convergent evolution’, where different groups of living things have independently evolved similar behaviours or body parts in response to similar evolutionary pressures.

It is one of a growing number of studies have shown that convergence on the surface – like having venom, being intelligent or lacking enamel – is borne of deeper genetic resemblance. But this discovery is special in a deliciously ironic way. It was made by two groups of scientists, who independently arrived at the same result. The first authors even have virtually identical names. These are people who take convergence seriously!

Read More

Venomous shrews and lizards evolved toxic proteins in the same way

By Ed Yong | October 29, 2009 12:00 pm

The Northern short-tailed shrew is a small, energetic mammal that lives in central and eastern North America. The Mexican beaded lizard is a much larger reptile found in Mexico and Guatemala. These species are separated by a lot of a land and several million years of evolution, yet they share astonishing similarities. Not only are they both venomous, but the toxic proteins in their saliva have evolved in very similar ways from a common ancestor, converging on parallel lethal structures independently of one other. 

This discovery, from Yael Aminetzach at Harvard University, shows that adaptations are sometimes very predictable. Despite the many changes that could have shaped the course of venom proteins in lizards and shrews, they seem to have gone down a consistent and similar route.


Northern short-tailed shrew by Giles Gonthier; Mexican beaded lizard by PiccoloNamek

The northern short-tailed shrew is one of the few venomous mammals, but its poisonous bite is painful to humans and can kill smaller animals. The key to its venom is a protein called BLTX, whose job is to cut another protein in two. This chemical reaction frees a molecule called bradykinin, which widens blood vessels and lowers blood pressure. It’s a necessary job, but BLTX is so active that if floods the body with bradykinin – an overdose that leads to paralysis and death.

BLTX is a dark, hyperactive descendant of an ancestral protein called kallikrein-1, which does the same thing but in a much more restrained way. Aminetzach found that BLTX is a longer version of kallikrein and the extra amino acids it has gained have changed the structure of the protein’s ‘active site’.

The active site is the protein’s business end – it allows BLTX to latch onto the right targets and catalyse the relevant chemical reactions. It’s also the part of the protein that has changed the most from the harmless kallikrein model; amino acids around BLTX’s active site have changed about twice as much as the rest of the protein. As a result, the site is larger, more flexible and better at drawing in its target, and the protein as a whole has become hyperactive.

And amazingly, the Mexican beaded lizard has gone through similar changes. Its venom relies on a protein called GTX, which is also descended from kallikrein. Like BLTX, it too is a longer version of its ancestor, and while its extra amino acids have been shoved into different places, the results are the same. The changes have altered the protein’s active site so that it’s larger, more flexible and better at drawing in its target.

These changes are very specific to these toxic proteins. By studying 24 relatives of kallikrein, Aminetzach found that none of the non-toxic members of the family have any of the changes that BLTX and GTX share.

This study demonstrates that evolution doesn’t work with infinite possibilities. Often, there are only a few roads leading to the same destination. Through different amino acid changes, both BLTX and GTX have evolved similar structures and have turned into weapons. This predictability of venom evolution may be useful to us – for example, Aminetzach suggests that it could allow scientists to more easily identify toxins from others species, even distantly related ones.

Reference: Current Biology 10.1016/j.cub.2009.09.022

More on venom:

CATEGORIZED UNDER: Animals, Evolution, Lizards, Mammals, Reptiles
NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Not Exactly Rocket Science

Dive into the awe-inspiring, beautiful and quirky world of science news with award-winning writer Ed Yong. No previous experience required.
ADVERTISEMENT

See More

ADVERTISEMENT
Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »