Tag: electric shock

Different neuron networks control fear of different threats

By Ed Yong | March 10, 2009 8:30 am

Blogging on Peer-Reviewed ResearchIf you wanted to turn a rat into a fearless critter, unfazed by cats or bigger rats, the best way would be to neutralise a small pair of tiny structures in its brain called the dorsal premammillary nuclei, orPMD. According to new research by Simone Motta at the University of Sao Paolo, these small regions, nestled within a rat’s hypothalamus, control its defensive instincts to both predators and other rats.

But not all neurons in the PMD are equal. It turns out that the structures are partitioned so that different bits respond to different threats. The front and side parts (the ventrolateral area) are concerned with threats from dominant and aggressive members of the same species. On the other hand, the rear and middle parts (the dorsomedial area) process the threats of cats and other predators. And both areas are distinct from other networks that deal with the fear of painful experiences, such as electric shocks.

This complexity is surprising. Until now, scientists have mostly studied the brain’s fear system by focusing on an area called the amydgala, which plays a role in processing memories of emotional reactions.  And they have generally assumed that fearful responses are driven by the same networks of neurons, regardless of the threat’s nature.

There’s good reason to think that. Hesitating in the face of danger is a sure-fire way to lose one’s life, so animals respond in a limited number of instinctive ways when danger threatens. They freeze to avoid detection, flee to outrun the threat, or fight to confront it. These automatic “freeze, fight or flight” responses are used regardless of the nature of the threat. Rats, for example, behave in much the same way when they are menaced by cats or electrified floors alike, and actually find it very difficult to do anything else.

This limited repertoire of action convinced scientists that animals process different fears in the same way, relying on the same network of neurons to save their hides from any and all threats. Motta’s research shows that this idea is wrong, certainly for rats and probably for other mammals too. The brain’s fear system isn’t a one-size-fits-all toolkit; it has different compartments that respond specifically to different classes of threats.

Read More

Beta-blocker drug erases the emotion of fearful memories

By Ed Yong | February 16, 2009 7:45 am

Blogging on Peer-Reviewed ResearchThe wiping of unwanted memories is a common staple of science-fiction and if you believe this weekend’s headlines, you might think that the prospect has just become a reality. The Press Association said that a “drug helps erase fearful memories“, while the ever-hyperbolic Daily Mail talked about a “pill to erase bad memories“. The comparisons to The Eternal Sunshine of the Spotless Mind were inevitable, but the actual study, while fascinating and important, isn’t quite the mind-wiper these headlines might have you believe.

The drug in question is propranolol, commonly used to treat high blood pressure and prevent migraines in children. But Merel Kindt and colleagues from the University of Amsterdam have found that it can do much more. By giving it to people before they recalled a scary memory about a spider, they could erase the fearful response it triggered.

The critical thing about the study is that the entire memory hadn’t been erased in a typical sci-fi way. Kindt had trained the volunteers to be fearful of spidery images by pairing them with electric shocks. Even after they’d been given propranolol, they still expected to receive a shock when they saw a picture of a spider – they just weren’t afraid of the prospect. The drug hadn’t so much erased their memories, as dulled their emotional sting. It’s more like removing all the formatting from a Word document than deleting the entire file. Congatulations to Forbes and Science News who actually got it right.

Kindt’s work hinges on the fact that memories of past fears aren’t as fixed as previously thought. When they are brought back to mind, proteins at the synapses – the junctions between two nerve cells – are broken down and have to be created from scratch. This process is called “reconsolidation” and scientists believe that it helps to incorporate new information into existing memories. The upshot is that when we recall old memories, they have to be rebuilt on some level, which creates an opportunity for changing them.

A few years ago, two American scientists managed to use propranolol to banish fearful responses in rats. They injected the animals in their amygdalae, a part of their brains involved in processing emotional memories. The drug didn’t stop a fearful memory from forming in the first place, but it did impair the memory when the rats tried to retrieve it. Now, Kindt has shown that the chemical has the same effect in humans.

Read More

NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Not Exactly Rocket Science

Dive into the awe-inspiring, beautiful and quirky world of science news with award-winning writer Ed Yong. No previous experience required.
ADVERTISEMENT

See More

ADVERTISEMENT
Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »