Tag: primates

A life in the trees is a longer one

By Ed Yong | February 22, 2010 3:00 pm


An assortment of tree-living mammals

In The Descent of Man, Darwin talked about the benefits of life among the treetops, citing the “power of quickly climbing trees, so as to escape from enemies”. Around 140 years later, these benefits have been confirmed by Milena Shattuck and Scott Williams from the University of Illinois.

By looking at 776 species of mammals, they have found that on average, tree-dwellers live longer than their similarly sized land-lubbing counterparts. Animals that spend only part of their time in trees have lifespans that either lie somewhere between the two extremes or cluster at one end. The pattern holds even when you focus on one group of mammals – the squirrels. At a given body size, squirrels that scamper across branches, like the familiar greys, tend to live longer than those that burrow underground, like prairie dogs.

These results are a good fit for what we already know about the lives of fliers and gliders. If living in the trees delays the arrival of death, taking to the air should really allow lifespans to really take flight. And so it does. Flight gives bats and birds an effective way of escaping danger, and they have notably longer lives than other warm-blooded animals of the same size. Even gliding mammals too tend to live longer than their grounded peers.

Read More

CATEGORIZED UNDER: Ageing, Evolution, life history

Inner ear size can predict a mammal's agility

By Ed Yong | April 20, 2009 8:42 am

Revisitedbanner.jpg

Blogging on Peer-Reviewed ResearchStudying the way an animal moves by looking at its ears might seem like a poorly thought-out strategy. After all, short of watching it directly, most biologists would choose to look at more obvious traits like tracks, or limb bones.

A 3-D reconstruction of a baboon's skull and its semicircular canals.But while an animal’s limbs may drive it forward, its inner ear makes sure that it doesn’t immediately fall over. By controlling balance, it plays a key role in movement, and its relative size can tell us about how agile an animal is.

When we walk, the image that forms on our retinas changes quite considerably. But no matter how fast or erratically we move, our view of the world neither jerks nor judders. It’s all stable images and smooth transitions, and the inner ear plays a large role in that.

In the inner ear, three semicircular canals control our balance by acting like small gyroscopes. The canals are bony, fluid-filled tubes arranged at right angles to each other and send information to the brain about the body’s orientation.

When the body moves, so does the fluid and this sloshing is sensed by hairs in the canals and relayed to the brain. The muscles of the neck and eye tense reflexively in response to these signals, and these help to stabilise our view of the world.

In humans, the inner ear doesn’t really have to work too hard – we’re limited to moving on the ground, and not very quickly at that. It’s a whole different story for a fast and agile animal like a bat, twisting and turning in three-dimensional airspace while avoiding obstacles and predators.

Read More

The death and resurrection of IRGM – the "Jesus gene"

By Ed Yong | March 5, 2009 8:00 pm

Blogging on Peer-Reviewed ResearchThe world of genetics is filled with stories that are as gripping as the plot of any thriller. Take the IRGM gene – its saga, played out over millions of years, has all the makings of a classic drama. Act One: setting the scene. By duplicating and diverging, this gene thrived in the cells of most mammals as a trinity of related versions that played vital roles in the immune system.

Act Two: tragedy strikes. About 50 million years ago, in the ancestors of today’s apes and monkeys, the entire IRGM cluster was practically deleted, leaving behind a sole survivor. Things took a turn for the worse – a parasitic chunk of DNA called Alu hopped into the middle of the remaining gene, rendering it useless. IRGM was, for all intents and purposes, dead and it remained that way for over 25 million years of evolution.

Act Three: the uplifting ending. The future looked bleak, but IRGM’s fortunes were revived in the common ancestor of humans and great apes. Out of the blue, a virus inserted itself into this ancient genome in just the right place to resurrect the long-defunct gene. A fall from grace, a tragic demise and an last-minute resurrection – what more could you ask for from a story?

This twisting tale lies hidden in the genomes of the world’s mammals and it was discovered and narrated by Cemalettin Bekpen from the University of Seattle. To reconstruct the evolutionary story of the IRGM gene, Bekpen searched for it in a variety of different species.

(Oh come on – you try to find an image to illustrate this story!)

Read More

NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Not Exactly Rocket Science

Dive into the awe-inspiring, beautiful and quirky world of science news with award-winning writer Ed Yong. No previous experience required.
ADVERTISEMENT

See More

ADVERTISEMENT
Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »