A Second Look at the “Hole in the Sun”: Lessons from a Media Flub

By Corey S. Powell | August 11, 2013 1:59 pm

What’s up with that crazy giant hole on the sun? That’s the question I was addressing during my short appearance on Fox News last week. Or rather, it’s the question I was trying to address. My explanation contained a few poor word choices, which resulted in a confusing and misleading description of solar activity. That is the danger of live television: once a conversation goes off track, it’s hard to get back in real time, with only 100 seconds to go.

SOHO sun

The coronal hole, as seen by the SOHO spacecraft on July 18. (Credit: ESA/NASA/SOHO)

These days nothing on TV really vanishes, of course. My clip is preserved online, where anyone can react and critique it—and boy did I get some critiques. The good news is that the story of the hole on the sun is a fascinating one, and the queries and criticisms it inspired point the way to a much deeper understanding both of how the sun works and how it affects us here on Earth. I gave a lemon of an interview. Time to make some lemonade.

The Sun is a Mass of Incandescent…Plasma

Let’s start with the image itself. It was taken with the Extreme Ultraviolet Telescope aboard the Solar Heliospheric Observatory, or SOHO. The observatory was created jointly by NASA and the European Space Agency. It’s been operating since 1995, making it one of the older solar space telescopes; some commentators criticized me for using an “outdated” image of the sun but this one was released just last month by NASA, and for good reason: SOHO is still doing great work, and there’s a lot to appreciate in this one view.

One important thing to know in interpreting the image is that the sun is not actually made of gas. Under intense heat, atoms lose some or all of their electrons and become plasma, sometimes called the fourth state of matter. It is technically correct to say that there are no atoms in the sun—the entire mass of the sun is ionized. Plasma is electrically charged and so can hold a magnetic field, not unlike an electromagnet. That explains a lot about how the sun works, and about why it looks the way that it does.

In the sun’s upper atmosphere, or corona, magnetic waves heat the plasma to extreme temperatures of 3 million degrees Fahrenheit or even higher, far hotter than the 10,000-degree F. temperature of the photosphere, the visible surface of the sun. How exactly that mechanism works is an area of active study. (Another point of contention: in my Fox News segment I referred to the temperature in degrees without specifying the scale. Solar physicists typically express temperatures in the Kelvin scale. But if I’m speaking to a lay audience, I always assume Fahrenheit: When was the last time you heard someone say, “Man it’s broiling today—it must be 310 K outside”?)

SOHO’s Extreme Ultraviolet Telescope picks up high-energy radiation from that superheated coronal plasma, detecting several different wavelengths of extreme ultraviolet radiation. Shorter, more energetic wavelengths come from hotter parts of the corona. Almost all of the radiation detectable to the telescope comes from the corona. The photosphere appears black at these wavelengths, because that region is not nearly hot enough to shine brightly in extreme ultraviolet.

Anatomy of a Coronal Hole

Now we get to the heart of the story. The sun’s corona is a seething mass of magnetic fields. In most places the field loops out of the sun and back, trapping and heating the plasma. But in some locations the field lines are open; think of them as straws sticking straight out of the sun rather than bending around and inward. The places where the field lines are open are known as “coronal holes.”


The coronal hole, as seen by the newer Solar Dynamics Observatory one solar rotation earlier. (Credit: NASA/SDO)

That is what you are seeing in this SOHO image: The huge blank part of the sun is a region where the temperatures and densities in the corona are relatively low, so it appears dark in the SOHO image. The corona leaks out from the sun in all directions, creating a flow known as the solar wind. But coronal holes are associated with particularly high-speed gusts of wind that travel at up to 500 miles per second—nearly 2 million miles per hour. Those strong winds contribute to space weather, the movement of particles and magnetic fields in space that can disrupt power and communications on Earth.

Here is where I got in trouble in my TV appearance. I described the dark part of the SOHO image as a chunk of the sun that is missing because it is flying our way at 2 million miles per hour. Error #1 was using the term “chunk.” I think of the sun as chunky because magnetized plasma holds together in a way that ordinary gases and liquids do not; the loops, filaments, sunspots, and other structures on the sun are evidence of that property. But chunk implies a solid, and the plasma in the corona is very far from a solid.

One indication of just how thin the coronal plasma really is: Small, sungrazing comets pass right through it without getting blown apart by solar winds. They are damaged far more by the sun’s gravity and radiant heat. And the corona itself carries surprisingly little heat energy, even though it is at a temperature of millions of degrees, because it is so sparse. If you could somehow shield a person from the sun’s direct rays, the heat flux from the corona would be about the same as it is at home at room temperature, according to astronomer John Brown of the University of Glasgow. The molecules in Earth’s atmosphere each carry far less energy, but ordinary air is far far denser than the corona.

Error #2 was saying that part of the sun is “missing.” I was thinking about the coronal hole as a depleted region of the corona. Temperatures and densities are lower there than elsewhere in the corona, because the sun’s plasma is not trapped in closed tubes of magnetic field. But again, there is a serious problem of connotation. Missing implies that something was there and is suddenly gone. In reality, coronal holes evolve over many months, and even years, as the sun’s 11-year cycle of magnetic activity rises and falls. The coronal hole in the SOHO image is part of a long-lasting gusty patch of solar wind.

As for “flying our way,” I’ll give myself partial credit there. The hole in question is not aligned with Earth (although other coronal holes certainly are), so its high-speed wind mostly passed over us. And any wind from the date when the SOHO image was taken would have already passed Earth, but the same region of the sun comes around each time the sun rotates, roughly once a month.

Strictly speaking, the corona is flying off all the time and this coronal hole region is a place where it is flying off faster and more efficiently than in other regions of the sun. Plasma from the coronal hole region really is flying out at speeds of 1 million to 2 million miles per hour. That high-speed component of the solar wind blows past Earth and jostles our planet’s magnetic field, contributing to stormy space weather. But it is a very different thing than an explosive event like a solar flare or a coronal mass ejection, a bona fide eruption in which a tremendous mass of material is ejected all at once.

A Realistic Measure of Risk

Stepping back, I am encouraged that so many people took me to task for my sloppy statements. There are active communities of astronomy enthusiasts, and even of specific space-weather enthusiasts, on Twitter, Facebook, and YouTube. Facebook’s Space Weather Trackers do a particularly good job. They stepped up to critique my Fox News comments, fill in the missing parts of the story, and point readers to sources of authoritative information.

(They also had some colorful things to say about me personally. I’m not used to being called an “idiot” so often by people who are not family, and I do believe this is the first time I’ve ever been accused of being both a Fox News shill and an Obama clone—at the same time, by the same person. Not to mention quite a number of unprintable words. Nothing like reading comments on the Internet to keep a man humble.)

My biggest concern is that my Fox News comments miscommunicated the real risks of solar activity (“fearmongering” as some of my critics called it). I noted that coronal holes happen all the time, but that is only part of the story. Because holes are an ongoing source of the high-speed component of the solar wind, they contribute to the background effects of space weather. The real risks come from those explosive events, the flares and coronal mass ejections, or CMEs—the equivalents to hurricanes and tornadoes as opposed to a day of high winds.

Flares and CMEs are associated with many of the biggest costs of space weather. And those costs are not insignificant. The National Research Council estimates that space weather causes $200 million to $400 million in damage each year in the United States. The effects of high solar activity show up in all kinds of places. It can disrupt airplane communications, disrupt GPS signals, speed the corrosion of pipelines, and shorten the life of satellites through radiation damage or by hastening the rate at which their orbits decay. Lloyds, the British insurance company, put together a bracing summary of the risks.

The real concern, which I highlighted at the end of my Fox appearance, is that the sun might experience a superflare: an extreme explosive event far more intense even than the typical flare, but also far rarer. I pointed out that the last true superflare happened in 1859, an eruption known as the Carrington event; milder ones happened in 1921 and 1960. Such a solar eruption is quite different than a coronal hole. In fact, it’s essentially the opposite. A coronal hole is a slow, steady release of solar plasma from a magnetically open region of the sun. A superflare is a fast, explosive release from a place of extreme magnetic confinement.

A superflare could wreak havoc on electronic technology. Damage to communications satellites alone would total tens or even hundreds of billions of dollars. The even bigger concern is that a superflare would induce intense power surges in the electrical grid, possibly overloading transformers and triggering a blackout across a large part of the world. Fixing all those transformers could take many weeks or months—time without routine power for hospitals, computers, factories, etc. The National Research Council put a possible $1-2 trillion price tag on such an event.

Where We Go from Here

Solar Probe Plus

Solar Probe Plus, illustrated here, will approach within 4 million miles of the sun, protected by a carbon-foam shield that can withstand temperatures of 2,600 degrees F. (Credit: NASA/JHU-APL)

Fortunately, better models of solar activity and a better understanding of space weather can go a long way toward ameliorating those risks. That SOHO image is just one small part of the story. Newer space telescopes like STEREO and the Solar Dynamics Observatory are providing much better readings of what the sun is doing. Even more information will come from NASA’s daredevil Solar Probe Plus mission, set for a 2018 launch. Space weather forecasts help satellite operators and electrical utilities to prepare for power and radiation surges. Concerns about worst-case scenarios will help make sure that they never come to pass.

The sun itself may be cooperating with us, at least in the short run. Solar activity has been trending somewhat downward over the past half-century, for reasons poorly understood. Then again, the Carrington event occurred during a cycle when solar activity was not unusually intense. Scientists still have a long way to go toward fully making sense of how the sun works.

In the future, I’ll aim to do a better job communicating that effort.

Follow me on Twitter: @coreyspowell

  • Matthew Read

    I appreciate that you are a science educator. We certainly need more and there is a long history of the scientific community not prioritizing PR. Keep it up and try to laugh off the comment thread beasts.

  • stephen ramsden

    this guy should probably just stop talking now. What gets me is that there are so many other people who could have put this so much better that aren’t being paid by major science periodical.

    • Matthew Read

      Writers for ‘major science periodicals’ don’t have a lot of experience with live television. Hell, even people who work in television screw up live broadcasts on a fairly regular basis.

  • Brian Drourr

    Mark thank you for taking the time to compose this. As one of those avid space weather junkies a member to Christina;s Space Weather Trackers community and Aurora and Night sky photographer I was a bit blown away by the original piece. Well not that it was Fox but that someone with your obvious qualifications had said the things you had in that piece. But the fact that you not only took the time to respond to the SWT post and then to wright this it really shows the true depth of your knowledge and what you can and have contributed to the the science we all love so much (you hear that Mr.Smith {my HS science teacher}, I said I love science!). I am a firm believe that its not about never making mistakes but how we address then that matters. You scored some serous point in my book today! Thank you and keep up the great work!

  • Buddy199

    The same people who thought the Megalodon special was real must have thought we were in for a real life version of “Knowing”.

  • http://www.jumplive.com/ B Yen

    NOTE: Stephen Ramsden is himself part of the “Pseudo Science” group of KOOK amateur-astronomers with no STEM degrees, who think they know everything (but don’t)

    He got duped by that Jen Winter KOOK (“hijacked” Daystar Filters from owner in ill-health), started a dumb lawsuit. Lost his NASA/JPL Solar System Ambassador Program “solar ambassadorship”. He’s criticizing other efforts in Solar & Astronomy Outreach. Give me a break.

  • Fango

    Nice try at damage control but just by saying what you said on television was just sad/pathetic….. so how much did fox pay you to sensationalize normal sun activity?

    • coreyspowell

      I have never been paid anything to appear on TV. Not a penny, not ever. And my intention was to capture people’s imagination about the incredible power of what happens on the sun, not to put a big scare in them. If my intention was to scare, I would not have repeatedly said that events like this coronal hole happen “all the time,” and would not have clearly stated that the last major superflare was in 1859. But in fact I did both of those.

      I may have done a bad job explaining the science, but I was careful not to misstate the risk.

  • George Boosh

    Fox news’ rebroadcast of this image caused a lot of hysteria. It’s hard to believe this was not a planned event. The news release was over the weekend.
    The picture, at face value, appears dire. Fox made ZERO attempt to explain anything, just posting that oh by the way, the sun is imploding and the Kardasians have stopped smelling each others privates.

    I have a severe disrespect for space.com now. (Fox news was already on that list). The fact that you FAILED to properly convey your true concerns is not our problem. It’s your relationship with Fox news.
    And yes, Foxes interpretation of your information does amount to fear mongering. Hopefully you will be more responsible in your dealings with questionable news organizations like Fox news.

  • arc angelo

    i will tell this to my teacher

  • Victoria Wheeler

    A fat lot of good a correction does here. Your sloppiness will linger forever in the tiny minds of Fox News viewers. Thanks for contributing to the disinformation machine that is Fox News. No wonder they chose you as their ‘expert’.

  • Damon

    I can relate to the live television problem so when I say take it with a grain of salt please try to. Next, what is the truth behind the hole being a wormhole and relating it to string theory. I hope you can understand what I’m trying to get at without me having to ask or say it. Thank you


Out There

Notes from the far edge of space, astronomy, and physics.

About Corey S. Powell

Corey S. Powell is DISCOVER's Editor at Large and former Editor in Chief. Previously he has sat on the board of editors of Scientific American, taught science journalism at NYU, and been fired from NASA. Corey is the author of "20 Ways the World Could End," one of the first doomsday manuals, and "God in the Equation," an examination of the spiritual impulse in modern cosmology. He lives in Brooklyn, under nearly starless skies.


See More


Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Collapse bottom bar