Why Do Onions Make Us Cry?

By Ashton Yoon | June 6, 2017 10:00 am
1

Photo Credit: Tastyart Ltd Rob White/Getty Images

We all know that feeling: the burning sensation as we slice into a fresh onion, eyes watering and wincing to relieve the stinging. There are claims that home remedies can solve this problem, including burning a candle, putting the onion in the freezer before chopping, or cutting the onion underwater. In this article we will investigate the culprit behind our onion tears and a possible scientific resolution that has emerged in the 21st century.

The teary-eyed response to cutting an onion is due to the chemical syn-propanethial-S-oxide, which the onion has evolved as a defense mechanism against predators. Each cell inside the onion contains a vacuole filled with enzymes [1] called allinases that convert amino acid sulfoxides that are present in the onion cell to sulfenic acids [2] (namely 1-propenyl-L-cysteine sulphoxide, or PRENSCO)[3]; these are then transformed by another enzyme into syn-propanethial-S-oxide [4] (Fig 1).When the onion cell structure is broken during chopping, the enzymes are released and are then able to interact with other chemicals inside the onion cell, thus catalyzing the chemical reactions that produce syn-propanethial-S-oxide [1] (Fig 1).

2

Figure 1. Reaction mechanism for the formation of syn-propanethial-S-oxide. (Burnham, P.M. (1996))

The strong, spicy odor that onions emit when chopped are surprisingly not the culprit chemical that makes your eyes water. This odor is formed by the condensation of syn-propanethial-S-oxide to form odorous thiosulfanates [2]. Because syn-propanethial-S-oxide is a volatile sulfur compound, it easily diffuses into the air [1]. Your cornea contains nerves that relay information to the larger nerves responsible for touch, temperature, and pain detection on your face [2]. The nerves on your cornea detect the presence of syn-propanethial-S-oxide and send the signal to your central nervous system (Fig 2), which then stimulate the autonomic nerve fibers on the lachrymal glands to produce tears [2] in order to dilute the syn-propanethial-S-oxide. This is why referred to as lachrymatory compound or lachrymator, which can be defined as “an irritant that causes the eyes to fill with tears without damaging them” [5].

3

Figure 2. The lachrymal response (Tiwari, S., Ali, M.J., and Vemuganti, G.K. (2014)/ScienceDirect)

Whereas previously it was thought that a generic allinase could produce syn-propanethial-S-oxide, recent research has shown that it is synthesized by a specific enzyme called ‘lachrymatory factor synthase’ [3]. In fact, scientists succeeded in producing onions in 2015 with suppressed lachrymatory-factor synthase genes that contained 7.5 times less syn-propanethial-S-oxide as well as eliminated the lachrymatory response among sensory panelists [6]. Additionally, scientists have found that when they mixed only generic allinases and PRENSCO in vitro, the production of thiosulphinate – the chemical responsible for onion’s flavor – increased [3]. No more tears & more flavor? Sounds like a tasty treat we would be down for!

References Cited:

  1. Singh, M. (2016). The science of why onions make us cry. NPR. Retrieved from http://www.npr.org/sections/thesalt/2016/06/22/482032913/the-science-of-why-onions-make-us-cry
  2. Scott, Y. Scientific American. What is the chemical process that causes my eyes to tear when I peel an onion? Retrieved from https://www.scientificamerican.com/article/what-is-the-chemical-proc/
  3. Imai, S., Tsuge, N., Tomotake, M., Nagatome, Y., Sawada, H., Nagata, T., Kumagai, H. (2002). An onion enzyme that makes the eyes water. Nature, 419, 685.
  4. American Chemical Society. (2013). Syn-Propanethial S-oxide. Retrieved from https://www.acs.org/content/acs/en/molecule-of-the-week/archive/s/molecule-of-the-week-syn-propanethial-s-oxide.html
  5. Burnham, P.M. (1996). Propanethial s-oxide, the lachrymatory factor in onions. J. American Chemical Society, 118(32), 7492-7501.
  6. Kato, M., Masamura, N., Shono, J., Okamoto, D., Abe, T., & Imai, S. (2016). Production and characterization of tearless and non-pungent onion. Scientific Reports, 6, 23779. doi:10.1038/srep23779.
CATEGORIZED UNDER: Health & Medicine, Top Posts
MORE ABOUT: nutrition

Asparagus Season and Banana Problems

By Ashton Yoon | May 16, 2017 12:38 pm

20kitchen2-master768

Nothing welcomes spring as deliciously as an asparagus dish. But are you a little lost which is the freshest bunch on the shelf? How to best store them? Other ways to cook them besides oven roasting? City Kitchen’s got you covered. Where asparagus is a springtime treat, bananas are a year-round breakfast luxury. Unfortunately, its perennial availability puts it at risk for extinction.
Read More

CATEGORIZED UNDER: What We're Reading

The Savory Science of Instant Noodles

By Ashton Yoon | April 25, 2017 12:00 pm
shutterstock_584951452

(Credit: Pornpen Suechaicharoen/Shutterstock)

Guest post by Panisa Sundravorakul

Instant noodles are delicious, cheap, and easy to prepare. This combination of traits make instant noodles a seemingly perfect solution for college students’ hectic schedules and depleted bank accounts. Let us take a moment to appreciate what made instant noodles possible — let us savor the science behind this culinary delicacy.

Instant noodles are truly a technological marvel – they can last for up to 12 months on the shelf, and a tiny little packet of seasoning makes the noodles taste so good. You can thank science for making this all possible. The shelf life of instant noodles ranges from 4 to 12 months, depending on environmental factors. Finding ingredients that are stable for this long, especially fats and oils that are prone to oxidation, is a culinary challenge.

Antioxidants like tertiary-butyl hydroquinone (TBHQ) can extend the shelf life of instant noodles by preventing the oxidation of fats and oils; this happens by donating electrons to neutralize free radicals, which stabilize the radical’s instability [1]. The texture of instant noodles is preserved by propylene glycol, which is found in the noodles mixture, and helps them retain moisture and prevent them from drying [2].

Monosodium L-glutamate  (MSG) is a common additive used to enhance the flavor of instant noodles. This molecule adds a robust and savory flavor to food, which is commonly described as umami, the fifth flavor after salt, sweet, sour, and bitter. Recent studies have found L-glutamate (Glu) receptors and transduction molecules in the gut mucosa, as well as the oral cavity (REF). The gastric infusion of MSG activates several brain areas, such as the insular cortex that is linked to the regulation of homeostasis; the limbic system is linked to olfaction; and hypothalamus is linked to certain metabolic processes and hunger control. This suggests that Glu signaling via the gustatory and visceral pathway plays a crucial role in digestion, absorption, and metabolism. [3]

Untitled4

Figure 1. Nutritional content vs. daily recommended intake for various components of instant noodles. (Photo Credit: Panisa Sundravorakul)

While noodles might be tasty, convenient, and save you money and time, they do not contain sufficient nutrients that fulfill the body’s daily nutritional needs. Instant noodles are relatively high in sodium, carbohydrates and fat, and quite low in protein, fiber, vitamins, and minerals [4]. Figure 1 compares the daily nutrition intake as recommended by The National Institute of Health to the nutritional content in one package of instant noodles (Figure 1) [5]. Instant noodles account for too much of daily sodium intake, and not enough for fiber, vitamin A and C, calcium, and iron daily intake.

There is no doubt that instant noodles are a fascinating food science innovation. Health-wise, instant noodles are certainly safe to eat, but if you are thinking about consuming them regularly, think again about how your health could benefit from eating more nutrient-rich foods.

References Cited:

  1. Toxicology Data Network. “T-Butylhydroquinone”. S. National Library of Medicine. 2013. Web. 21 January 2017.
  2. Agency for Toxic Substances and Disease Registry (ATSDR).”Toxicological profile for Propylene Glycol”. Department of Health and Human Services, Public Health Serv 1997. Web. 7 Jan 2017.
  3. Torii, K. “Brain activation by the umami taste substance monosodium L-glutamate via gustatory and visceral signaling pathways, and its physiological significance due to homeostasis after a meal”. Journal of Oral Biosciences. 54.3 (2012): 144-150. Web. 20 March 2017.
  4. Nissin Foods. “Top Ramen- Nutrition Facts and Ingredients”. Nissin Foods. Web. 21 January 2017. National Institute of Health. “Nutrient Recommendations: Dietary Reference Intakes (DRI)”. U.S. Department of Health & Human Services. 2011. Web. 21 January 2017.
CATEGORIZED UNDER: Science & Food

Science & Food UCLA 2017 Public Lecture Series

By Ashton Yoon | April 13, 2017 10:28 pm

 

Public Lecture

The 2017 UCLA Science & Food public lecture series is here!

FOOD WASTE: Solutions Informed by Science (and what to do with your leftovers)

Tuesday, May 2nd
7:00 pm to 8:30 pm
Freud Playhouse, Macgowan Hall

World-renowned chef Massimo Bottura, UCLA professor Jenny Jay, Zero Waste Consultant and “Waste Warrior” Amy Hammes will participate in a panel discussion moderated by Evan Kleiman on “Food waste: solutions informed by science,” hosted by Dr. Amy Rowat, Science and Food, and the UCLA Healthy Campus Initiative. The discussion will focus on measuring the environmental effects of food waste, how policy influences food waste and its relationship to hunger and the environment.

General admission tickets are available for $25 from the UCLA Central Ticket Office (CTO) . Tickets can be purchased from the UCLA CTO over the phone or in person and will not include additional fees or surcharges. The UCLA CTO is located on-campus and is open Monday–Friday, 10am –4pm. A UCLA CTO representative can be reached during these hours at 310-825-2101. Tickets can also be purchased online from Ticketmaster for $25 plus additional fees. A limited number of $5 student tickets are available to current UCLA students. These must be purchased in person at the UCLA CTO with a valid Bruin Card.

For questions, please email laurah@ucla.edu.

CATEGORIZED UNDER: Public Lectures, Science & Food

To Eat With Your Eyes

By Nessa Riazi | April 13, 2017 10:26 am
anosmia_postcard-r386061700b48463c873726ec0560b87b_vgbaq_8byvr_324

Figure 1: (photocredit: Zazzle)

Interacting with food is an incredibly sensual experience. One might imagine the smell of an oven roast, or picture an oozing chocolate lava cake, maybe even hear the crunch of a stale baguette. But what happens when you lose your sense of smell and taste?

Anosmia is a disorder where one loses their ability to smell. There are various forms of this unfortunate disorder: Congenital anosmia is when someone is unable to smell at birth, and hyposmia describes the diminishing sense of smell that develops over time. Our senses of smell and taste are interdependent, so if you lose one of these senses, you lose the other one too.

Olfaction

Figure 2: (photocredit: Monell Center)

In understanding anosmia, it is critical to first grasp the science of smell. Whenever we breathe air, particles pass through our nose and bind to the olfactory receptors beneath the cribriform plate. The “nerve cells come into direct contact with the air we breathe,” [1] connecting the nose with the brain through the cribriform plate, a structure that resembles a honeycomb. This cribriform plate is crucial to our sense of smell, and any harm done to the plate can in turn damage the neurons that pass through it [3]. Some of the individuals who develop anosmia or hyposmia are either subject to injuries of the head, nasal polyps, inhaling toxic chemicals, or an upper respiratory infection (URI)–such as a cold– that damaged the receptor neurons. Swelling of the nasal tissue as a result of inflammation may “stretch the receptor cells and damage their ability to function properly” [3]. This is one potential factor, but further research is being conducted to understand more about the causes of anosmia.

smellpic

Figure 3: Anatomical representation of the olfactory system depicting how the nerves run directly through the cribriform plate. (Photocredit: Lippincott Williams & Wilkins)

As expressed by Nisha Pradhan, a college student who developed anosmia, her inability to smell is perhaps even affecting her memory, as she cannot recall certain scents from her past [2]. While memories engage with all senses, though primarily with sight, we underestimate the role that smell has in providing a context for us to categorize our everyday life experiences; most importantly though its relevance personal health. Not being able to smell freshly baked cookies is unfortunate, but the inability to detect rotting milk or smoke from a nearby fire is dangerous. While in some cases anosmia can worsen, it is not always a permanent condition and can subside with time as nasal congestion or other issues subside. Scientists are currently conducting research to develop potential treatments for anosmia. The Monell Center—which focuses specifically on research relating to taste and smell– is testing to see if olfactory stem cells can be used to synthesize new olfactory neurons. Olfactory receptor cells have the ability “to regenerate from specialized stem cells across a persons lifetime.” These stem cells would be derived from healthy individuals and then be transplanted into the patient [3].

Though it may slip the crevices of one’s mind, the nose is a vulnerable organ essential in constructing our everyday perceptions of life around us. It allows us to retrace memories, map the physical world around us, and most importantly preserve well-being. Heightening our gastronomic experiences, our ability to smell and taste food is a gateway to more meaningful sensory, social phenomena and life without them could only become incredibly bland.

References Cited:

  1. “What is Anosmia?” http://www.webmd.com/brain/anosmia-loss-of-smell#2-6
  2. Heist, Annette. “With no Sense of Smell, The World Can Be a Grayer, Scarier Place.” http://www.npr.org/sections/health-shots/2016/10/10/496455192/with-no-sense-of-smell-the-world-can-be-a-grayer-scarier-place
  3. “Causes of Anosmia.” Monell Center. https://www.monell.org/research/anosmia/anosmia_causes

 

CATEGORIZED UNDER: Science & Food

Duncan Grapefruits and Chemistry Court

By Ashton Yoon | March 27, 2017 10:01 pm

22grapefruit2-master675

The Duncan grapefruit has been described as “the finest, sweetest grapefruit” in the world, but after 187 years as the reigning champion of the American breakfast, the grapefruit inexplicably disappeared from grocery shelves. After only a few decades, it seems like the Duncan is making a comeback in Maitland, Florida.

Meanwhile, a conflict over the essences of sweeteners like Equal and Splenda brings chemistry into the courtrooms.

Read More

CATEGORIZED UNDER: What We're Reading

The Unique Health Benefits of Winter Produce

By Ashton Yoon | March 27, 2017 9:58 pm
untitled

(Credit: Nourish Evolution)

Guest post by Earlene Mulyawan

Winter season is when comfort food seems to take priority over fresh produce. But eating local during winter season is easy! There are plenty of produce that are rich in nutrients and flavor during this time of the year. Winter produce can also be just as tasty and nutritious with some creativity and a little twist. Read on to learn about how these three winter vegetables.

Beets are round, little balls of vegetables that grow underground. They taste a little like dirt too, but in a unique sweet and earthy way. What gives these rooty vegetables their earthy flavor and aroma is an organic compound called geosmin, which is produced by microbes in the soil. It is also the main contributor to the strong scent that occurs when rain falls after a dry weather.

Beets are an excellent source of betaine, a nutrient that has potential to help fight inflammation, improve vascular risk factors and enhance performance [1]. As a group, the anti-inflammatory molecules found in beets may provide cardiovascular benefits as indicated by large-scale studies, as well as anti-inflammatory benefits for other body systems [2]. There are many ways you can enjoy eating beets: Eat them raw, roasted, as a salad topping, or pickled!

untitled1

(Photo Credit: The New York Times)

Brussels sprouts, along with kale, cabbage, and broccoli, are members of the cruciferous family of vegetables. However, many scientists favor the term “brassica vegetables” over “cruciferous vegetables.” Brassica vegetables are unique because they are rich in sulfur-containing compounds called glucosinolates.

Our body converts glucosinolates to indoles and isothiocyanates. Epidemiological studies indicate that human exposure to isothiocyanates and indoles through cruciferous vegetable consumption may decrease cancer risk, but the protective effects may be influenced by individual genetic variation in the metabolism and elimination of isothiocyonates from the body [3]. Furthermore, a cohort study shows the inverse associations between the consumption of brassica vegetables and risk of lung cancer, stomach cancer, and all cancers taken together.

Of the case-control studies, 64% showed an inverse association between consumption of one or more brassica vegetables and risk of cancer at various sites [4]. One cup of brussels sprouts contains only 38 calories, and provides us with more than the daily-recommended intake of Vitamins C and K, 125% and 243% respectively. There’s no doubt that brussels sprouts offer plenty of health benefits. A simple way to prepare brussels sprouts is to simply toss them in olive oil and salt, roast them in the oven. When properly cooked, they should be bright green with a slightly crispy texture, and delicious!

citrusprimer4-1

(Photo Credit: The Young Austinian)

The health benefits of bright and cheery citrus fruits can help make your day a little brighter, as well. Citrus fruits are rich in Vitamin C and flavonoids. Flavonoids are a class of polyphenols found in various fruits and vegetables. There are over 5,000 different flavonoids. Naringin and hesperidin are flavonoids unique to citrus fruits. Naringin and its aglycone naringenin belong to this series of flavonoids and were found to display strong anti-inflammatory and antioxidant activities. Some studies even suggest that naringin supplementation is beneficial for the treatment of obesity, diabetes, hypertension, and metabolic syndrome [5].

Hesperidin facilitates the formation of vitamin C complex, which supports healthy immune system functions. It is useful, along with naringin, as a potential treatment for preventing the progression of hypoglycemia [6]. These refreshing citrus fruits may just turn your frown upside down!

References Cited:

[1]: Craig, Stuart AS. “Betaine in human nutrition1,2.” The American Journal of Clinical Nutrition. N.p., 01 Sept. 2004. Web. 07 Mar. 2017.

[2]: Mercola, Dr. “Six Amazing Health Benefits of Eating Beets.” Mercola.com. N.p., 25 Jan. 2014. Web. 01 Mar. 2017.

[3]: Higdon, Jane V., Barbara Delage, David E. Williams, and Roderick H. Dashwood. “Cruciferous Vegetables and Human Cancer Risk: Epidemiologic Evidence and Mechanistic Basis.” Pharmacological research: the official journal of the Italian Pharmacological Society. U.S. National Library of Medicine, Mar. 2007. Web. 01 Mar. 2017.

[4]: G van Poppel, and D T Verhoeven , H Verhagen , R A Goldbohm. “Brassica Vegetables and Cancer Prevention. Epidemiology and Mechanisms – Journals – NCBI.” National Center for Biotechnology Information. U.S. National Library of Medicine, 1999. Web. 01 Mar. 2017.

[5]: Alam, M. Ashraful, Nusrat Subhan, M. Mahbubur Rahman, Shaikh J. Uddin, and And Hasan M. Reza. “M. Ashraful Alam.” Advances in Nutrition: An International Review Journal. N.p., 01 July 2014. Web. 01 Mar. 2017.

[6]: John, Aubri. “What Is Hesperidin (Vitamin P)?” LIVESTRONG.COM. Leaf Group, 16 Aug. 2013. Web. 07 Mar. 2017.

CATEGORIZED UNDER: Science & Food

Wasabi Receptors and Smart Sushi Labels

By Ashton Yoon | March 27, 2017 9:52 pm

wasabi-receptor_custom-c20a4671dc132eb62d5d608cd87597ea1875f4cf-s800-c85

Researchers at UCSF have elucidated the structure of the receptor that makes our sensory nerves tingle when we eat wasabi.

As this receptor is important in our perception of pain, knowing its shape should help in the development of new pain medications. A company called Thinfilm, developed very thin, electronic label that tracks vital information about certain foods at each stage of the supply chain. This way, foods like sashimi salmon can have its temperature monitored from the warehouse to the grocery store, supplying information the consumer can use to decide whether to buy it.

The label offers a more accurate expiration date which could help decrease food waste and the number of cases of food-borne illnesses.

Read More

CATEGORIZED UNDER: What We're Reading

The Secret in Your Sushi

By Ashton Yoon | March 27, 2017 9:49 pm
1

(Photo Credit: Oceana/Jenn Hueting)

Dining out or shopping in a grocery store are seemingly straightforward: as the consumer, you make your selection and exchange money for goods. These interactions are based on an implicit trust that you get what you paid for. However, in recent years consumers have begun to demand more transparency with reports of mislabeled seafood at retailers and restaurants being greater than 70% in some instances [1].

Seafood is one of the most traded food items in the world, with approximately 4.5 billion people consuming fish as at least 15% of their source of animal protein [2]. The U.S. is the second largest consumer of seafood in the world behind China and with the recent health recommendations from the American Heart Association elucidating the benefits of fish consumption, sales of this commodity have reached an all-time high [3]. Increased awareness of the environmental burdens of the meat industry have further contributed to this move towards more seafood proteins [4]. The opportunities for seafood mislabeling have consequently increased.

A recent study performed by the Department of Ecology and Evolutionary Biology at UCLA sampled from 26 sushi restaurants in Los Angeles from 2012-2015. Led by Demian A, Willette and Sara E. Simmonds, this study found that a whopping 47% of samples were mislabeled. Similarly, From 2010-2012, Oceana, the world’s largest international ocean conservation organization, conducted a study investigating the prevalence of seafood fraud on a nationwide level. They collected 1,200 samples from 674 restaurants and markets in 21 different states and found that 33% of the samples were mislabeled. Figure 1 depicts a map generated from this study and the respective amount of mislabeling for each state sampled [3].

The types of substitution vary, often substituting cheaper fish such as tilapia for more expensive fish such as grouper, cod, and snapper [3]. Among the different types of fish sampled in UCLA’s four-year study, it was found that all sushi fish types, except Bluefin, tuna were mislabeled at least once. Halibut and red snapper samples were mislabeled 100% of the time [1].

2

Figure 1: National seafood fraud testing results (Photo Credit: Oceana)

UCLA and Oceana’s studies relied on DNA barcoding technology to elucidate the true identity of the sushi samples. DNA is the genetic blueprint of life, with each organism having its own unique genetic code that can be used in its identification. A DNA barcode is a specific DNA sequence within the genome that is used to identify a species. The sequence chosen is one that is conserved throughout species generations but contains detectable levels of variation between species to serve as a species identifier [5]. The specific sequence used was a fragment of the cytochrome c oxidase I (COI) mitochondrial gene that enables species to be identified without relying on any morphological indicators such as color or shape [4].

3

Figure 2: DNA barcoding process. (Photo Credit: Bio-Rad)

The basic process of DNA barcoding is outlined in Figure 2. First, a sample of the fish, which is approximately the size of an eraser on the end of a graphite pencil. Next, the DNA is extracted. This is achieved by the addition of buffers that both aid in breaking the cell membrane (which allows for the release of DNA) and denaturing the DNA [5], which involves the unfolding of its double-stranded helix structure and separation into two single strands, exposing the base pairs and making them available for replication.

Now that the fish DNA is isolated, the COI gene must be replicated enough times to in order to be sequenced, as well as visualized on a gel. This process is called polymerase chain reaction (PCR) amplification. This is accomplished using primers, or small strands of DNA that are recognized by DNA polymerase, the enzyme responsible for DNA replication. The primers used are called “degenerate primers,” [5] because they have flexibility in several base positions [6], DNA polymerase is used to extend the primers and replicate the DNA, effectively amplifying the amount of COI gene present in the sample [5].

4

Figure 3: Scientists prepare fish samples for DNA barcoding. (Photo Credit: Oceana/Jenn Hueting)

A gel electrophoresis is then performed on the sample and a UV transilluminator allows visualization of the DNA banding patterns in each sample. The samples are then sent to a specialized sequencing facility that utilizes the PCR products with a reverse sequencing primer and compares the produced DNA sequences using an algorithm called Basic Local Alignment Search Tool (BLAST) that compares the samples to an established sequence database.

This produces a numerical value called the “E-value” that serves as an indicator of homology and is used in conjunction with the result of gel electrophoresis in the identification of each sample’s species [5]. Figure 4 contains an image featuring the DNA barcodes of different species of fish. Each DNA base (C, T, G, or A) is designated by a specific colored bar, which are lined up in sequence and produce a specific barcode. Therefore, color variation indicates which bases differ amongst the species shown [5].

5

Figure 4: DNA barcodes of different species of fish. (Photo Credit: Ibol Project)

Besides the inherent dishonesty, there are many other negative effects of seafood mislabeling. Ocean conservation programs rely on accurate labeling in their calculations and recommendations, which can be skewed with inaccurate accounts of what species are being caught and sold [1].

Additionally, honest fisherman and businesses suffer as their correctly labeled fish are unable to compete with the low prices of mislabeled fish. Consumer health is also another issue. For example, white tuna was substituted with escolar 84% of the time, which is linked to serious digestive problems and consequently is banned in Italy and Japan [3]. Mislabeling of pufferfish as monkfish has led to temporary neurological damage in some consumers in 2007 and a monkfish recall. Substitution among tuna species also led to elevated mercury levels in canned light tuna, which is usually recommended as a safer canned tuna for children and pregnant women [1].

How can DNA barcoding change the future of seafood mislabeling and the seafood industry? Although 90% of seafood in the U.S. is imported, only 1% is inspected for fraud [3]. If DNA barcoding is used as a regulatory measure, it has the ability to strengthen traceability and therefore liability.

Currently, it is difficult to pinpoint exactly where in the food chain the mislabeling occurs, whether it is at the restaurant, retailers, or even earlier in the supply chain [3]. By enforcing existing policies through inspectors, retailers, easy-to-use DNA barcoding kits, and a sense of accountability throughout the seafood supply chain, we can use science to move towards a resolution towards these fishy mislabeling practices.

References Cited:

  1. Willette, D.A., Simmonds, A.E., Cheng, S.H., et. Al. (2017). Using DNA barcoding to track seafood mislabeling in Los Angeles restaurants. doi: 10.1111/coni.12888.
  2. Bene, C., Barange, M., Subasinghe, R. et al. (2015). Feeding 9 billion people by 2050 – putting fish back on the menu. Food Security 7: 261-274.
  3. Oceana (2013). Oceana study reveals seafood fraud nationwide. Retrieved from http://oceana.org/sites/default/files/National_Seafood_Fraud_Testing_Results_Highlights_FINAL.pdf
  4. Wong, E.H.K., Hanner, R.H. (2008). DNA barcoding detects market substitution in North American seafood. Food Research International 41: 828-837.
  5. Tighe, D., Andrews, S., Brown, L. (2016). Generate a DNA barcode and identify species. Retrieved from http://slideplayer.com/slide/5768597/
  6. Linhart, C., Shamir, R. (2005). The degenerate primer design problem: theory and applications. J comput Biol 4: 431-56.

 



Ashton YoonAbout the author: Ashton Yoon received her B.S. in Environmental Science at UCLA and is currently pursuing a graduate degree in food science. Her favorite pastime is experimenting in the kitchen with new recipes and cooking techniques.

Read more by Ashton Yoon


CATEGORIZED UNDER: Science & Food

Mind Control and Alternative Burgers

By Ashton Yoon | March 27, 2017 9:41 pm

notebook1

“Given humankind’s long history of struggling to find food, it makes sense that people are highly motivated to hunt it down, and that we experience intense pleasure when we finally eat it.”

According to Lauri Nummenmaa, a neuroscientist at Aalto University in Finland, this evolutionary drive to secure food could also mean that fatty foods affect our neuronal activity. Researchers found a weight-dependent pattern in the opioid receptors of healthy weight versus morbidly obese women.

If you have burgers on the brain, take some time to wonder: Will alternatives to meat ever become mainstream?

Read More

CATEGORIZED UNDER: What We're Reading
NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Science & Food

Science & Food brings you content on food and science including but not limited to: the scientific and culinary aspects of food that you eat; how knowledge of science and technology can be used to make better food; how science is integral to understanding the impact of food on our health and environment; as well as profiles of scientists and chefs that are advancing the frontiers of science and food.
ADVERTISEMENT

See More

ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Collapse bottom bar
+