Archive for July, 2011

Captain America Gets Enhancement Right

By Kyle Munkittrick | July 23, 2011 10:49 am

Captain America is not a serious scientific film. Nearly every piece of technology is furious hand-waving. Vibranium? Vita-rays? Rocket-powered propellers? The cosmic cube? Awesome, yes, but not real. These, however, are narrative tools, not attempts at hard scientific prediction and therefore not something to be critiqued. What the comic-book-tech of Captain America allows for is an exploration of the ethics of enhancement. Here, more than perhaps any other fictional film I’ve seen, Captain America displays striking balance and nuance – it gets enhancement right.

Based on your knowledge of the film and/or comics, this post may contain *spoilers*, so consider yourself warned. And if you’re looking for review of why it’s a fun movie, A.O. Scott in the NYT captures my sentiments about the film perfectly: pulpy Nazi-punching goodness. Now, on to enhancement!

There are three major factors that make the enhancement of Steve Rogers and his crimson domed antithesis, the Red Skull, unique among comic book lore. The first is that Steve Rogers was deliberately enhanced by someone. There is no accident, no crisis-as-catalyst-and-crucible event, no mystic charm, and no superhuman heritage to explain or justify Rogers’ becoming superhuman. Rogers is superhuman because Dr. Abraham Erskine develops a superhuman serum for that express purpose. Here, the science of enhancement is itself portrayed in a positive light. In what seems like every other superhero origin story, powers are acquired through scientific hubris. Be it the unintended consequences of splitting the atom, tinkering with genetics, or trying to access some heretofore unknown dimension, comic book heroes invariably arise by accident. The super serum, the vita-rays, and the outcome of the experiment on Rogers are all a scientific success. They happen precisely the way every person in the room hopes they will. Dr. Erskine is not a madman but a humble, ethical, and brilliant scientist trying to make better people. As such, he looks for the best in the humans he hopes to enhance. In short, Steve Rogers might be the only major superhero who is the result of scientific experimentation going to plan.

Second, Steve Rogers deliberately chooses to become enhanced. I had expressed my doubts about Rogers’ consent being genuine, but the film makes his determination and clarity of thought evident. Unlike many heroes, who seem to acquire their powers out of recklessness around science (Banner, Parker, Richards, I’m looking at you), Rogers very consciously decides to go through with Dr. Erskine’s procedure. He, in fact, might be one of the only heroes who ever knew he was going to be come a hero before his transformative event. That foreknowledge is critical for demonstrating that enhancement isn’t something that is only desired by egomaniacs. Rogers seeks strength and speed to defend and protect others. His body did not match how he saw his true self. Again, we see an anti-science motif of comic books turned on its head. Normally, those who seek superpowers are unworthy because they believe they deserve to be better than others, thus, the experiments go wrong. This attitude is embodied in the Red Skull, whose evil quite literally boils to the surface when he injects the super serum. However, Rogers’ reasoning is that others deserve to be protected and defended. Altruism, not egoism, is the driving force behind Rogers’ desire to become enhanced.

Third, and most important, is that enhancement in the film is not merely “functional” enhancement. That is, Rogers is not just stronger and faster. In a private moment, Dr. Erskine explains to Rogers that the serum and vita-rays affect “everything that is inside. Good becomes great. Bad becomes worse.” Erskine is not talking about physical traits here. Rogers’ “bad” traits (i.e. his laundry list of medical issues) are not aggravated by the serum, but cured. The good/bad that becomes great/worse are moral qualities and capacities of the person. Captain America is literally super-moral. His already above-average sense of moral clarity and determination to do what is right becomes amplified in the same way that the lust for power and pleasure from slaughter are magnified in the Red Skull.

Moral enhancement, a fairly recent talking point among thinkers in the bioethics community, is handled deftly in Captain America. Enhancements do not change who we are or from where we come, but serve to empower and improve traits which we already possess. For Steve Rogers, those traits are what we wish for most in our heroes: beneficence, altruism, and humility. Note, among his list of valued traits are not unwavering loyalty to national authority (despite his irritating flag fetish) or deference to some commanding power. Instead, Rogers’ own judgment causes him to defy orders at almost every turn. Why? Because Captain America’s sense of ethics is itself enhanced. He is a better human being because of Dr. Erskine’s process.

I haven’t seen a movie that was this pro-science and pro-human goodness in a long time. I may not have seen a movie that was this pro-enhancement ever. Did I mention it also involves Nazi-punching?

Follow Kyle on his personal blog, Pop Bioethics, and on facebook and twitter.

Promotional Image of Captain America via Marvel.com

CATEGORIZED UNDER: Biotech, Comics, Transhumanism

When Will We Be Transhuman? Seven Conditions for Attaining Transhumanism

By Kyle Munkittrick | July 16, 2011 9:53 am

The future is impossible to predict. But that’s not going to stop people from trying. We can at least pretend to know where it is we want humanity to go. We hope that laws we craft, the technologies we invent, our social habits and our ways of thinking are small forces that, when combined over time, move our species towards a better existence. The question is, How will we know if we are making progress?

As a movement philosophy, transhumanism and its proponents argue for a future of ageless bodies, transcendent experiences, and extraordinary minds. Not everyone supports every aspect of transhumanism, but you’d be amazed at how neatly current political struggles and technological progress point toward a transhuman future. Transhumanism isn’t just about cybernetics and robot bodies. Social and political progress must accompany the technological and biological advances for transhumanism to become a reality.

But how will we able to tell when the pieces finally do fall into place? I’ve been trying to answer that question ever since Tyler Cowen at Marginal Revolution was asked a while back by his readers: What are the exact conditions for counting “transhumanism” as having been attained? In an attempt to answer, I responded with what I saw as the three key indicators:

  1. Medical modifications that permanently alter or replace a function of the human body become prolific.
  2. Our social understanding of aging loses the “virtue of necessity” aspect and society begins to treat aging as a disease.
  3. Rights discourse would shift from who we include among humans (i.e. should homosexual have marriage rights?) to a system flexible enough to easily bring in sentient non-humans.

As I groped through the intellectual dark for these three points, it became clear that the precise technology and how it worked was unimportant. Instead, we need to figure out how technology may change our lives and our ways of living. Unlike the infamous jetpack, which defined the failed futurama of the 20th century, the 21st needs broader progress markers. Here are seven things to look for in the coming centuries that will let us know if transhumanism is here. Read More

The Only Sci-Fi Explanation of Hominid Aliens that Makes Scientific Sense

By Kyle Munkittrick | July 12, 2011 8:45 am

Science fiction has a problem: everyone looks the same. I know there are a few series that have aliens that look unimaginably different from human beings. But those are the exception, not the rule. Most major sci-fi series – Star Wars, Babylon 5, Mass Effect, Star Trek, Farscape, Stargate – have alien species that are hominid.

Consider the above image. Of the twenty visible species, only five are visibly not hominid. That’s right, I count the prawn, xenomorph, predator, Cthulhu and A.L.F. as being hominid. I grant that it’s a bit of a stretch. A more conservative evaluation would be that only two of the twenty are truly hominid. The others, which we’ll call pseudo-hominids, still share the following with humans: bipedal locomotion; bilateral symmetry; a morphology of head, trunk, two arms, and two legs; upright posture; and forward-facing, stereoscopic eyes. I grant they don’t look precisely human, but the similarities are too striking to be swept into the nearest black hole.

Even the most strident supporter of parallel evolution would laugh in the face of anyone who claimed that the most intelligent species on nearly every planet in the universe just happened to evolve the exact same physiology. In series like Star Trek and Mass Effect, where interspecies relationships are possible, this cross-species compatibility is made even more preposterous. We all suspend our scientific disbelief to enjoy the story and the characters. No one believes for a second that the first species we meet in the cosmos is going to look just like us save for some pointy ears and a bowl haircut.

But what if many species in the universe do look like humans? How in Carl Sagan’s cosmos could we explain parallel evolution of that magnitude? Star Trek: The Next Generation, manages to give a scientifically plausible answer to the question of hominid and biologically compatible alien species in an episode entitled “The Chase.” Which lead me to develop the Hominid Panspermia Theory of Science Fiction Aliens.
Read More

CATEGORIZED UNDER: Aliens, Biology, Philosophy, Utter Nerd

Stem Cells and Synthetic Scaffolds Save Man from Tracheal Cancer

By Kyle Munkittrick | July 8, 2011 1:35 pm

A patient with tracheal cancer was given a new trachea grown entirely in a lab from his own stem cells using a synthetic scaffold. The cancer has been diagnosed as terminal, but thanks to the surgery, the man is likely to be discharged in a few days. As Gautam Naik at the Wall Street Journal reports:

“It’s yet another demonstration that what was once considered hype [in the field of tissue engineering] is becoming a life-changing moment for patients,” said Alan Russell, director of the McGowan Institute for Regenerative Medicine in Pittsburgh, who wasn’t involved in the latest operation. . .

With the patient on the surgery table, Dr. [Paolo] Macchiarini and colleagues then added chemicals to the stem cells, persuading them to differentiate into tissue—such as bony cells—that make up the windpipe.

About 48 hours after the transplant, imaging and other studies showed appropriate cells in the process of populating the artificial windpipe, which had begun to function like a natural one. There was no rejection by the patient’s immune system, because the cells used to seed the artificial windpipe came from the patient’s own body.

Dr. Russell of the McGowan Institute sounded a note of caution about using this technique to build more-complex organs. For example, while tissue engineering can help to build hollow organs such as a windpipe, it will likely prove a bigger challenge to use the technique for creating the heart, which has much thicker tissue.

The use of a synthetic scaffold is landmark for two reasons. First, it means that those in need of a trachea transplant don’t have to wait for a donor trachea. Stem cells can be used to make one to order. Second, previous lab-grown tracheae had used tracheae from cadavers as scaffolds. The use of a fully synthetic scaffold means that only the patient’s own cells create the new organ. As a result, the body recognizes the new organ as its own and does not attempt to reject it, removing the need for immunosuppressive drugs. The success of this operation creates the foundation for other lab-grown organs because the only two necessary ingredients were stem cells and synthetic scaffolds. No need for donors, cadavers, or immunosuppressive drugs.

The implications for anti-aging medicine are incredible: imagine being able to get a new set of organs dropped in every twenty years or so. Brand new heart, lungs, and guts fresh from the factory. Or, if you’re born with a bad ticker or digestive issues, no worries, we’ll just whip you up a new one and swap it out. It would be a paradigm shift in the treatment of disease.

The possibilities here are tremendous, but also a long ways away. Dr. Russell is right when he calls out the simplicity of the trachea in relation to other organs. The trachea is the first small step of many large steps science still needs to take before we can readily and safely replace any organ in the body. Still, that a man’s life was saved by a technology that was science fictional two decades ago is a cause worth celebrating.

Follow Kyle on his personal blog, Pop Bioethics, and on facebook and twitter.

CATEGORIZED UNDER: Biotech, Medicine
MORE ABOUT: stem cells, transplants

Ender's Game Proves That Every Child Deserves to Be Gifted And Talented

By Kyle Munkittrick | July 4, 2011 12:07 pm

A major argument against human enhancement is that most enhancements won’t be beneficial if everyone is enhanced. Being tall, for example, is only beneficial if you’re taller than most other people. In terms of competitive advantage, nearly any enhancement you look at fails the zero-sum test. Better, stronger muscles? Too bad, everyone else has those, so you won’t be an athletic super-star. Wiz-bang intelligence? Big deal, MIT just ups their entrance exam to compensate so only the most brilliant among a population of geniuses gets in. If all boats rise, you don’t benefit, right?

An excellent example of this mindset can be found in The Incredibles. My love of Pixar is not a mystery to anyone. However, one of the lines that bothers me most in any of their films is Syndrome’s motivating thesis in The Incredibles. Syndrome (Buddy Pine) is a once-in-a-generation genius who, born without superpowers like those of ElastiGirl and Mr. Incredible, builds technology that enables him to be superhuman. In short, Syndrome is what would happen if Tony Stark had been bullied as a kid and told by Captain America to let the big boys take care of everything.

When “monologuing” (the meta humor in the movie is fantastic), Syndrome betrays the kernel of his motivation to be a super villain. His goal is to neutralize those with superpowers (aka “supers”) so that when his robot attacks the city, he can be the sole savior. After being crowned a hero when the supers fail, he will sell his own gizmos and gadgets — rocket boots and zero-point energy among other things — to anyone who wants them. Thereby, he will give every person the opportunity to be super. And, by his logic, “When everyone is super, then no one will be.”

We can apply Syndrome’s concept to cognitive enhancement. That is, “When everyone is gifted and talented, no one will be.” Buddy, you are mistaken. Ender’s Game explains why. Read More

CATEGORIZED UNDER: Mind & Brain, Transhumanism
NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

ADVERTISEMENT

See More

ADVERTISEMENT
Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »