Tag: bioengineering

Tiny Hair-Like Sensors Could Help Smart Materials React to Their Environments

By Jeremy Jacquot | September 24, 2010 8:01 pm

Cilia

I have seen the future, and it is cilia. Yes, you read that right: those trillions of tiny hair-like extensions that carpet every inch of your body could bring scientists’ visions of a universal class of “smart” materials that change and adapt when subjected to various stimuli closer to reality. These artificial cilia could one day do everything from testing drugs and monitoring air quality to measuring glucose levels and detecting electromagnetic fields.

While largely ignored over the past century (or, at best, dismissed as being purely vestigial), scientists are finally beginning to appreciate the many vital functions they perform in and outside of our bodies. Much like an antenna or sensor, cilia gather information from their surroundings and react—by activating a cellular process or shutting down cell growth, for example—if something seems amiss. They can also act as miniature roads or railways, carrying dirt, bacteria and other noxious materials out of our lungs or shuttling a fertilized egg from the ovary to the uterus. And, perhaps most importantly, cilia make it possible for us to see, hear, smell, and otherwise feel the outside world.

Now some researchers believe that cilia-like structures could bring their sensory prowess to medicine, environmental monitoring and a number of other fields. Leading the charge is Marek Urban of the University of Southern Mississippi who has created a copolymer film with hair-like filaments that mimics the functions of normal cilia. Read More

CATEGORIZED UNDER: Biology, Biotech, Chemistry, Materials, Medicine

Synthetic Ovaries Bring Eggs Out of the Womb and Into the Petri Dish

By Jeremy Jacquot | September 17, 2010 7:00 pm

Artificial ovaryThe engineered ovary after 48 hours.

For many cancer patients, treatment can be a double-edged sword. While recent advances in chemotherapy, radiation therapy, and surgery have brought relief to millions of sufferers, a significant fraction have had to sacrifice their ability to have children in return. Going under the knife or being bombarded by high-energy rays—though often critical for therapy—can sometimes irreparably damage a woman’s eggs or man’s testes, robbing them of their fertility. To say that this leaves young patients pondering therapy with an unenviable set of choices would be something of an understatement.

Fortunately, thanks to some groundbreaking work by researchers from Brown University, female patients may soon never have to make this most difficult of decisions. A team led by Sandra Carson, a professor of obstetrics and gynecology, has built the first synthetic human ovary from scratch by cobbling together the three cell lines involved in egg development—the theca cells, granulosa cells, and egg cells themselves—into a fully three-dimensional honeycomb-shaped structure.

Read More

CATEGORIZED UNDER: Biology, Biotech, Medicine

Concrete + Extremophile Bacteria = Walls That Repair Themselves

By Jeremy Jacquot | September 3, 2010 4:20 pm

cracked_concreteWhen William McDonough and other pioneers of the sustainable architecture movement first envisioned the concept of living, breathing buildings, it’s safe to say that they probably didn’t have structures teeming with actual living, breathing bacteria in mind. But don’t tell that to Henk Jonkers of Delft University of Technology in the Netherlands. What he and his colleagues have developed—a self-fixing bacteria-concrete hybrid—may do more to propel sustainable architecture into the mainstream than McDonough could have ever hoped for.

While it may sound unheard of, scientists have been pressing bacteria into service in construction for years. The use of mineral-producing bacteria has already been explored in a variety of applications, including the hardening of sand and in repairing cracks in concrete. But there are two problems inherent to this approach. First, the reaction that these bacteria undergo to synthesize calcium carbonate results in the production of ammonium, which is toxic at even moderate concentrations. The other problem is a more prosaic one. Since the bacteria have to be applied manually, a worker or team of workers would have to go out every few weeks to patch up every little crack on every slab of concrete—nearly defeating the purpose of making the repair process simpler and more cost-effective.

Jonkers’ solution was to track down a different bacterial strain that could live happily buried in the concrete for prolonged periods of time. Because the bacteria would be mixed into the concrete from the start, they could immediately nip small cracks in the bud before they had a chance to expand and become exposed to water, rendering them vulnerable to further wear and tear. (Concrete structures are typically reinforced with steel bars, but these can easily become corroded when water seeps into the cracks.) Such a strain would have to endure the high pH environment of concrete and churn out copious amounts of calcium carbonate without also producing large quantities of ammonium. Read More

CATEGORIZED UNDER: Biotech, Materials, Top Posts

WiFi Medicine: Implantable Biosensors That Could E-mail Your Doctor

By Jeremy Jacquot | August 20, 2010 2:00 pm

Silk-based metamaterialHaving already become a ubiquitous part of our mobile-centric daily lives, wireless technologies are now poised to slip inside our bodies. Researchers and companies around the world are designing the next generation of biosensors—implantable microchip-like devices that can monitor a patient’s health and ping doctors on their smartphones or computers if something is amiss. One day, some of these devices could even apply short-term fixes or treat disorders outright.

The major challenge that scientists face is developing a sensor that is both long-lived and biocompatible. The human body is extremely picky about implants, and will quickly reject or react poorly to most materials found in everyday electronics. Even the materials that make peace with the body’s immune system, like those found in pacemakers, are not always ideal. Some require constant maintenance, while others need to be replaced every few days and are inconvenient to install, to say the least.

Read More

CATEGORIZED UNDER: Biology, Biotech, Chemistry, Materials, Medicine

Do You Speak Brain? Try Studying These Neurons-on-a-Chip

By Jeremy Jacquot | August 13, 2010 1:18 pm

spacing is importantThe neurons of a patient suffering from Alzheimer’s.

You may not be consciously aware of it, but at any given time your brain is playing host to billions of simultaneous conversations (and no, I’m not talking about those voices). I speak, of course, of the conversations between your neurons—the incessant neural jabbering that makes it possible for you to move your limbs, learn, remember, and feel pain. Every time we experience a new sensation or form a memory, millions of electrical and chemical signals are propagated across dense networks of axons and jump from one synapse to the next, building new neuronal connections or strengthening existing ones. And they are constantly changing—forming and reforming associations with other neurons in response to how the brain perceives and processes new bits of information.

Despite being central to our understanding of how the brain functions, these neural chats remain largely a mystery to scientists. What exactly are the individual neurons “saying” to each other? And how do these electrical and chemical “messages” become translated into actions, memories, or a range of other complex behaviors? To help decipher these discussions, a team of researchers from the University of Calgary led by bioengineer Naweed Syed have built a silicon microchip embedded with large networks of brain cells. The idea is to get the brain cells to “talk” to the millimeter-square chip—and then have the chip talk to the scientists through a computer interface.

Read More

Better Off Ted: Test Tube Meat

By Stephen Cass | March 26, 2009 8:19 pm

Screenshot from Better Off TedABC’s new comedy, Better Off Ted, is centered around the antics of the research and development division of the only-slightly-fictional mega corporation Veridian Dynamics. It’s a funny show — it doesn’t have a stream of constant zingers, but the cast has chemistry and the characters are enjoyable.

Last night’s episode was about a crash project to grow beef (or at least something beeflike) without the cow. Unfortunately, according to the company’s long suffering food taster, their initial efforts tasted more like “despair.”

Read More

CATEGORIZED UNDER: Biotech, TV
NEW ON DISCOVER
OPEN
CITIZEN SCIENCE
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

ADVERTISEMENT

See More

ADVERTISEMENT
Collapse bottom bar
+

Login to your Account

X
E-mail address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it e-mailed to you.

Not Registered Yet?

Register now for FREE. Registration only takes a few minutes to complete. Register now »