Are Drones Bad News for Bears?

By Carl Engelking | May 4, 2016 4:42 pm

(Credit: NaturesMomentsuk/Shutterstock)

Are drones truly unbearable? Mark Ditmer, a wildlife researcher at the University of Minnesota, has been asking himself that question a lot lately.

Last year, Ditmer grabbed headlines when he published evidence in the journal Current Biology suggesting drones, UAVs, UAS — whatever you want to call them — might be stressing out wild black bears. Basically, when the bears spotted, or heard, Ditmer’s drone overhead, cardiac biologgers fitted on the bears indicated their heart rates soared, a possible sign of acute stress. Read More

CATEGORIZED UNDER: Living World, Technology, top posts
MORE ABOUT: animals, technology

We Could Have Contained California’s Oak Tree Epidemic

By Nathaniel Scharping | May 4, 2016 4:08 pm

The effects of sudden oak death are clearly visible above Mescal Ridge in Monterey County. (Credit: California Oak Mortality Task Force)

There’s a deadly disease ripping through Northern California right now, leaving millions of dead trees in its wake. There’s nothing we can do to stop it now, but we could have.

So-called “sudden oak death” is a disease caused by the plant pathogen Phytophthora ramorum, which is related to the menace that caused the Irish potato famine. The scale of destruction stemming from the disease seems to have surpassed what lawmakers in the region expected, and the time to fight back has long since passed: According to a new study, 2002 was our last chance to turn the tide.  Read More

CATEGORIZED UNDER: Environment, top posts

Pudgy Dogs and Humans May Share a Key Gene

By Nathaniel Scharping | May 3, 2016 2:45 pm

This Lab clearly wants more. (Credit: Stephanie Zieber/Shutterstock)

When a hungry dog turns those puppy eyes on its owner, it can be tough to say no. And for those with a Labrador retriever, such meltingly cute appeals happen with much greater frequency — some Labs just seem to be hungry all the time, often leading to unhealthy weight gains.

When Some is Never Enough

A team of researchers from the University of Cambridge in the U.K. says that they have discovered why some dogs seem to be shameless gluttons. A key mutation in one of their genes likely reduces the amount of hunger-suppressing chemicals in their bodies, the scientists say, meaning that they just never feel full. In a genetic analysis of 310 Labradors, the researchers found that 23 percent of them had a mutation in the POMC gene, which they think is responsible for producing two compounds essential for telling the dogs when they’ve had enough.

The researchers searched for the gene in 38 other species of dog, but found it in only one, flat coat retrievers, a close relative of Labs. While the presence of the mutation does not necessarily doom a dog to a life of obesity, Labs without the gene were much more likely to be overweight. On average, such dogs weighed almost five pounds more. The scientists published their research Tuesday in the journal Cell Metabolism.

Anything for a Treat

The dogs with the genetic mutation also responded more strongly to food — they begged for a treat more often and paid greater attention at mealtimes. This had the positive side effect of making these dogs easier to train, the researchers found. Because food is often used as a reward in training programs, the hungry dogs were more likely to pay attention when the possibility of a meal was dangled in front of them.

This explained another finding from the study: assistance dogs were about three times more likely to possess the gene mutation than other dogs. Food plays a large part in their training, meaning that hungry dogs have more incentive to pay attention and learn quickly.

The study has implications for studying obesity in humans as well. Like their human companions, dogs are suffering from a prevalence of obesity likely linked to the same factors — overeating, sedentary lifestyles — that afflict us, and it appears that we can now add genetics to that list as well. A version of the POMC gene is found in humans, where it has also been linked to differences in body weight. By showing that the gene acts similarly in both man and his best friend, researchers may be able to translate their findings to humans.

Future research is needed to examine exactly how the gene suppresses hunger, and how to treat those without gene. But, if the trials are successful, what works for your dog might also work for you.

CATEGORIZED UNDER: Health & Medicine, Living World
MORE ABOUT: animals, nutrition

Macaques Are Learning to Communicate with Touch-screens

By Lorna Collier | May 3, 2016 10:54 am

A macaque works with a touch-screen during training at the Lincoln Park Zoo. (Credit: Lincoln Park Zoo)

Akita, a 10-year-old Japanese macaque, sits in a glass booth calmly tapping away as colored dots flash on a video touch-screen anchored to a wall in front of him. Red, blue, yellow – he picks the dots in the requisite order, then grabs for his reward: fresh blueberries that pop out of a tube onto the floor next to him.

Akita is one of eight adult Japanese macaques at the Lincoln Park Zoo in Chicago being trained to use a touch-screen. For now, he’s mastering simple sequencing tasks. But soon, researchers will start him on new exercises aimed ultimately at getting inside his head—finding out what he and the other macaques think and feel about their life in the zoo.

How Are You Feeling?

A death or birth among their troop? Too many noisy visitors pressed up to the glass in front of them? Researchers hope to find out how these things affect the animals so that they can adjust animal care in response. Touch-screens, they hope, will provide a way to do this.

“The goal is to evaluate and enhance their welfare,” says Katherine Cronin, lead research scientist for the zoo’s macaque project, which she believes to be unique to North America.

Melissa Bateson, a professor of ethology at Newcastle University in the United Kingdom, has studied ways to communicate with animals and consulted with Cronin. Over the past decade, she says, animal welfare scientists have tried to adapt tasks used to measure emotions in humans to animals, but the process has been “quite laborious,” with a person needed to interact with the animal, offer it choices and record its behavior.

“Translation of these tasks to a touch-screen that can offer choices and record data automatically would be a great advance,” she says, and “would pave the way for more widespread use of these novel approaches in applied settings such as zoos.”

Visitors can view the research in progress most weekdays at the Regenstein Macaque Forest at the zoo. 

Step by Step

Cronin’s work with the macaques began in March 2015 and has involved a series of gradual “shaping” steps: first getting the monkeys to approach the two glassed-in booths adjoining the macaques’ habitat, then waiting as the monkeys figured out how to push through the pet-door opening, touch the touch-screen and ultimately learn to tap specific images on the screen. 


Katherine Cronin delivers a reward — a blueberry — for a job well done. (Credit: Lincoln Park Zoo)

Cronin hopes soon to try exercises aimed at teasing out monkeys’ states of mind—whether they are pessimistic or optimistic, happy or sad—based on principles of human psychology. For example, if you’re in a good mood, you notice positive things. Monkeys could be shown an array of pictures of happy and not-so-happy things on the touch-screen; seeing which images they click could give an insight into their feelings. Researchers check these conclusions against monkeys’ stress hormones, which are collected in feces and analyzed, as well as observations of their interactions in the habitat.

Macaque Pecking Order

Already the research has helped Cronin and her team glean insights into the monkeys’ social environment—a rigidly defined hierarchy that the macaques self-police. This means that the monkeys voluntarily come to the booths during training time (generally mid-day, five days a week) in their ranked order, with alpha Akita first.

Even if the macaques don’t get to the point of being able to communicate their cares and woes to their keepers, the touch-screen training has helped enhance their daily lives. Cronin says that research shows engaging in tasks that challenge the monkeys’ minds is in itself “a way to improve their welfare and keep them stimulated, because they’re such smart, complex animals.”

CATEGORIZED UNDER: Living World, Mind & Brain, top posts

‘Robo-Mermaid’ Hunts for Sunken Treasure

By Nathaniel Scharping | May 2, 2016 4:20 pm

OceanOne on its dive exploring the ship La Lune. (Credit: Frederic Osada and Teddy Seguin/DRASSM)

When it comes to performing delicate operations, it’s hard to beat a pair of human hands. However, extreme environments aren’t exactly hands-on places.

When Stanford researchers were building a diving robot they decided to put two human-ish hands at the ends of its arms. And then, to further meld human with machine, they connected the robotic hands to a human counterpart on the surface. A range of haptic sensors provides near-instantaneous feedback to the operator about the weight of an object or how hard the grip is. The robot, called OceanOne, could be used for underwater excavations and conducting dangerous repairs on oil rigs.

Really, OceanOne’s services could be deployed anywhere a pair of (almost) human hands would come in … handy. Read More

CATEGORIZED UNDER: Technology, top posts
MORE ABOUT: ocean, robots

3 Earth-Like Exoplanets Found in an Unexpected Location

By Nathaniel Scharping | May 2, 2016 11:13 am

An artist’s impression of the star TRAPPIST-1, as seen from above one of the newly-discovered exoplanets. (Credit: ESO/M. Kornmesser)

Sometimes the long shots pay off.

Case in point: They latest findings from Belgian astronomer Michaël Gillon from the University of Liege and his TRAPPIST telescope. The TRAnsiting Planets and PlanetesImals Small Telescope is designed to search for exoplanets where no one thought they existed. Gillon and his team expanded the search for Earth-like exoplanets to small, relatively cool stars known as dwarfs, which were thought to be too small to have spawned planets from their accretionary disks. Read More

CATEGORIZED UNDER: Space & Physics, top posts

NOAA Spots Yet Another Bizarre, Deep-Sea Dweller

By Nathaniel Scharping | April 29, 2016 2:45 pm

Yes, this creature lives on Earth. (Credit: NOAA) 

It’s often said that we know less about the bottom of the ocean than we do about the solar system.

We haven’t found any extraterrestrials out there yet, but there are still plenty of fascinating creatures to be discovered right here at home.

Take the latest find from the National Oceanic and Atmospheric Administration’s 10-week mission to explore the depths of the Mariana Trench. This deep-water jellyfish, discovered over two miles beneath the surface, looks more like something from a science fiction movie with its spindly limbs and garishly-colored body. Read More

CATEGORIZED UNDER: Living World, top posts
MORE ABOUT: unusual organisms

Train-Rattling Peacocks Are Biomechanical Wonders

By Carl Engelking | April 27, 2016 1:00 pm

A peacock unfurls his magnificent train feathers. (Credit: Roslyn Dakin)

When you see a peacock shake a train feather, you’re watching finely tuned natural engineering at work.

When a peacock wants to woo a peahen, he unfurls his glorious, iridescent feathers and furiously vibrates them in what’s called a “train-rattling” display. The vibrations make the bird’s signature eyespots appear to float, motionless atop a swirling sea of wispy feather barbs.

In his book on sexual selection, Darwin believed peacocks vibrated their colorful tails “merely to make noise,” because the motion could “hardly add to the beauty of their plumage.” This, coming from a man who said the sight of a peacock feather was enough to make him sick — peacocks, with their clumsy, massive feathers, didn’t fit nicely into Darwin’s “survival of the fittest” framework. They sort of forced him to develop the idea of sexual selection as an additional mechanism of evolution.


More than 150 years after Darwin’s heyday, scientists now have high-speed imaging, audio analyzers and scanning electron microscopes at their disposal. And in a new study, published Wednesday in the open-access journal PLOS ONE, scientists used these tools to analyze the biomechanics of the peacock tail wiggle. Their results suggest the bird’s feather structure and tail-shaking behavior work in harmony to enhance the appearance of those signature spots. Read More

CATEGORIZED UNDER: Living World, top posts
MORE ABOUT: animals, evolution

Dogs and Hugs May Not Mix

By Nathaniel Scharping | April 27, 2016 12:47 pm

This dog doesn’t exactly look thrilled. (Credit: Christin Lola/Shutterstock)

It’s hard to resist wrapping your arms around a furry pup, but our well-intentioned hugs might be stressing dogs out.

While it’s natural for us to demonstrate caring by wrapping our arms around our companions, such behavior is likely activating a primal stress response in dogs, says Stanley Coren, a professor of psychology at the University of British Columbia who specializes in canine psychology.

When it comes time to choose between fighting and fleeing in a stressful situation, dogs are cursorial creatures, meaning they are naturally disposed to running away, he says. When we grab them in an embrace and hold on tight, they feel anxious and constrained, because there’s nowhere to run. In other words, our behavior communicates the opposite of what we intended. Read More

CATEGORIZED UNDER: Living World, Mind & Brain, top posts
MORE ABOUT: animals, psychology

Dwarf Planet Makemake Isn’t Alone

By John Wenz | April 26, 2016 2:54 pm

The newly discovered moon, MK 2, found in Hubble data orbiting Makemake. (Credit: NASA, ESA, A. Parker)

In 2005, Caltech astronomers Mike Brown and Chad Trujillo discovered dwarf planet Makemake, currently believed to be the third largest object in the Kuiper Belt after Pluto and Eris. But at the time, astronomers believed it was alone out there on its long path around the Sun. But new data from the Hubble Space Telescope reveal a moon around the tiny world, and offer a little explanation as to where it was hiding.

“The satellite that we found was not that faint and not that close to Makemake,” says Alex Parker, principal investigator of the research and a planetary scientist at the Southwest Research Institute. “It popped right out of the data when we looked.” Read More

CATEGORIZED UNDER: Space & Physics, top posts
MORE ABOUT: solar system


Briefing you on the must-know news and trending topics in science and technology today.

See More


Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

Collapse bottom bar